2520
Z.-Z. Chen et al.
LETTER
(9) General Procedures for Compounds 4 and 8
In conclusion, two scaffolds, namely benzimidazole and
quinoxalin-2(1H)-one, were obtained via a facile one-pot,
three-step procedure. The use of carboxylic and glyoxylic
acids broadened the scope of the 2CC method and signifi-
cantly extended the range of biologically active amides or
peptides that could be synthesized. The deprotection and
intermolecular cyclization steps may have applications in
other reactions for designing druglike compounds in me-
dicinal chemistry.
A solution of 2-(N-Boc-amino)phenylisocyanide (0.50
mmol) and carboxylic acid (0.50 mmol) in DCE (2 mL) was
subjected to microwave irradiation at 150 °C for 20 min.
After the microwave vial was cooled to r.t., the solvent was
removed, and the product was purified by silica gel column
chromatography using a gradient of EtOAc–hexane (10–
100%) to afford the relative benzimidazole products.
Compound 4: 85% yield. 1H NMR (400 MHz, CDCl3): δ =
8.28 (s, 1 H), 8.05–7.96 (m, 1 H), 7.88–7.77 (m, 1 H), 7.67–
7.57 (m, 1 H), 7.49–7.46 (m, 2 H), 7.19–7.09 (m, 2 H). 13
C
NMR (100 MHz, CDCl3): δ = 160.8, 158.2, 144.2, 142.1,
134.0, 131.4, 126.3, 125.9, 120.8, 115.5, 112.6, 112.4.
HRMS: m/z calcd for C14H8F2N2O [M + H]+: 258.0605;
found: 258.0603.
Acknowledgment
The authors thank the Scientific Research Foundation of Chongqing
University of Arts and Sciences (R2013XY01, R2013XY02,
R2013CJ03), the Chongqing Science & Technology Commission,
(Grant No. CSTC2013JCYJA50028) for funding this research. We
would also like to thank one of the reviewers for providing insight-
ful comments to our manuscript.
(10) (a) Xu, Z.; Ayaz, M.; Cappelli, A. P.; Hulme, C. ACS Comb.
Chem. 2012, 14, 460. (b) Meester, W. J. N.; Maarseveen, J.
H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. Eur.
J. Org. Chem. 2003, 14, 2519.
(11) Núñez-Rico, J. L.; Vidal-Ferran, A. Org. Lett. 2013, 15,
2066.
(12) Hirth, P. K.; Mann, E.; Shawyer, K. L.; Ullrich, A.; Szekely,
I.; Bajor, T.; Haimichael, J.; Orfi, L.; Levitzki, A.; Gazit, A.;
Tang, P. C.; Lammers, R. US 6331555, 2001.
(13) Miao, Z. W.; Nakajima, S.; Or, Y. S.; Porter, B.; Sun, Y.;
Tang, D. T.; Wang, Z.; Xu, G. Y. WO 2004093798 A2,
2004.
(14) Duncton, M.; He, H. Y.; Kawakami, J.; Kiselyov, A.;
Pytowski, B.; Sherman, D. WO 2005007099 A2, 2005.
(15) Willardsen, J. A.; Dudley, D. A.; Cody, W. L.; Chi, L.;
McClanahan, T. B.; Merts, T. E.; Potoczak, R. E.;
Narasimhan, L. S.; Holland, D. R.; Rapundalo, S. T.;
Edmunds, J. J. J. Med. Chem. 2004, 47, 4089.
Supporting Information for this article is available online
at
10.1055/s-00000083.SunpfgIpi
o
o
nr
i
References and Notes
(1) (a) Xu, Z.; Shaw, A. Y.; Dietrich, J.; Cappelli, A. P.; Nichol,
G.; Hulme, C. Mol. Diversity 2012, 16, 73. (b) Xu, Z.; Shaw,
A. Y.; Nichol, G.; Cappelli, A. P.; Hulme, C. Mol. Diversity
2012, 16, 607. (c) Xu, Z.; Moliner, F. D.; Cappelli, A. P.;
Hulme, C. Angew. Chem. Int. Ed. 2012, 51, 8037.
(2) (a) Li, X. Danishefsky S. J. Nat. Protoc. 2008, 3, 1666.
(b) Li, X.; Yuan, Y.; Berkowits, W. F.; Todaro, L. J.;
Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 13222.
(c) Li, X.; Yuan, Y.; Kan, C.; Danishefsky, S. J. J. Am.
Chem. Soc. 2008, 130, 13225.
(3) (a) Jones, G. O.; Li, X.; Hayden, A. E.; Houk, K. N.;
Danishefsky, S. J. Org. Lett. 2008, 10, 4093. (b) Wu, X. Y.;
Yuan, Y.; Li, X.; Danishefsky, S. J. Tetrahedron Lett. 2009,
50, 4666.
(4) (a) Polisar, J. G.; Li, L.; Norton, J. R. Tetrahedron Lett.
2011, 52, 2933. (b) Ppshsar, J. G.; Norton, J. R. Tetrahedron
2012, 68, 10236. (c) Wu, X. Y.; Stockdill, J. L.; Wang, P.;
Danishefsky, S. J. J. Am. Chem. Soc. 2010, 132, 4098.
(5) (a) Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130,
5446. (b) Wu, X. Y.; Li, X.; Danishefsky, S. J. Tetrahedron
Lett. 2009, 50, 1523.
(16) Shaw, A. Y.; Denning, C. R.; Hulme, C. Synthesis 2013, 45,
459.
(17) General Procedure for the Synthesis of Compound 14
A solution of 2-(N-Boc-amino)phenylisocyanide (0.50
mmol) and carboxylic acid (0.50 mmol) in DCE (2 mL) was
subjected to microwave irradiation at 150 °C for 10 min.
After the microwave vial was cooled to r.t., TFA (0.20 mL)
was added to the mixture and treated in microwave again at
100 °C for 10 min. Then, the solvent was removed, and the
residue was diluted with EtOAc (15 mL) and washed with
sat. Na2CO3 (15 mL) and brine (10 mL). The organic layer
was dried over MgSO4 and concentrated. The residue was
purified by silica gel column chromatography using a
gradient of EtOAc–hexane (10–80%) to afford the relative
benzimidazole products.
Compound 14a: yield 82%. 1H NMR (400 MHz, DMSO-d6):
δ = 12.59 (s, 1 H), 8.40–8.21 (m, 2 H), 7.85 (dd, J = 8.0, 1.4
Hz, 1 H), 7.63–7.44 (m, 4 H), 7.41–7.27 (m, 2 H). 13C NMR
(100 MHz, DMSO-d6): δ = 155.0, 154.6, 136.1, 132.5,
130.8, 130.6, 129.7, 129.2, 128.3, 123.8, 115.5. HRMS: m/z
calcd for C14H10N2O [M + H]+: 222.0793; found: 222.0796.
(6) Jones, G. O.; Li, X.; Hayden, A. E.; Houk, K. N.;
Danishefsky, S. J. J. Org. Chem. 2003, 10, 4093.
(7) Vasan, M.; Neres, J.; Williams, J.; Wilson, D. J.;
Teitelbaum, A. M.; Remmel, R. P.; Aldrich, C. C.
Chem. Med. Chem. 2010, 5, 2079.
(8) Nemoto, T.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc.
2001, 123, 9474.
Synlett 2014, 25, 2518–2520
© Georg Thieme Verlag Stuttgart · New York