Organic Letters
Letter
(c) Barluenga, J.; Gonzal
́
ez-Bobes, F.; Gonzal
́
ez, J. M. Angew. Chem.,
half their values in the complex (Table S4). The acid
experiences the greatest change in the diffusion coefficient
when complexed (a factor of 2), a fact that agrees with its
participation in the complex. The measurements were carried
out in dilute solution in CD2Cl2, where viscosity variations due
to small sample composition changes are negligible. Thus, the
significant decrease in diffusion for o-nitrobenzoic acid when 3
is present provides strong evidence for the existence of the
complex in solution.
Int. Ed. 2002, 41, 2556. (d) Montoro, R.; Wirth, T. Org. Lett. 2003, 5,
4729. (e) Montoro, R.; Wirth, T. Synthesis 2005, 1473. (f) Ling, X.-G.;
Xiong, Y.; Zhang, S.-T.; Huang, R.-F.; Zhang, X.-H. Chin. Chem. Lett.
2013, 24, 45.
(6) Barluenga, J.; Campos-Gom
́ ́
ez, E.; Rodríguez, D.; Gonzalez-
Bobes, F.; Gonzalez, J. M. Angew. Chem., Int. Ed. 2005, 44, 5851.
́
(7) Artaryan, A.; Mardyukov, A.; Kulbitski, K.; Avigdori, I.;
Nisnevich, G. A.; Schreiner, P. R.; Gandelman, M. J. Org. Chem.
2017, 82, 7093.
Furthermore, I2 acts as a mild Lewis acid catalyst (halogen
bond donor)23 but is not able to oxidize 4 to 724 (Table S5).
The monoacid complex (19) is slightly preferred over the
is no halogen bond in diacid complex 2a-E (Scheme S5). An
acid amount of 2.2 equiv compared to 0.36 equiv gave a rate
acceleration of only ∼2 even at higher dilution. This result also
supports the formation of a monoacid complex. Structure 19
consumes one benzyl radical (20) and forms benzyl iodide (6)
as well as a new radical 21 (ΔG298K = 1.3 kcal mol−1), which is
able to carry the radical chain (cycle A). The latter reacts
further to trimethylhydantoin (22) forming a strong amide
(8) (a) Khazdooz, L.; Zarei, A.; Aghaei, H.; Azizi, G.; Gheisari, M. M.
Tetrahedron Lett. 2016, 57, 168. (b) Bandgar, B. P.; Bettigeri, S. V.
Monatsh. Chem. 2004, 135, 1251.
(9) (a) Namavari, M.; Satyamurthy, N.; Phelps, M. E.; Barrio, J. R.
Tetrahedron Lett. 1990, 31, 4973. (b) Naeimi, H.; Nazifi, Z. S. Russ.
Chem. Bull. 2015, 64, 1814.
(10) Orazi, O. O.; Corral, A.; Bertorello, H. E. J. Org. Chem. 1965, 30,
1101.
(11) (a) Baba, H.; Togo, H. Tetrahedron Lett. 2010, 51, 2063.
(b) Krabbe, S. W.; Do, D. T.; Johnson, J. S. Org. Lett. 2012, 14, 5932.
(c) Bloodworth, A. J.; Curtis, R. J. J. Chem. Soc., Chem. Commun. 1989,
173. (d) Kulbitski, K.; Nisnevich, G.; Gandelman, M. Adv. Synth. Catal.
2011, 353, 1438.
(12) Filimonov, V. D.; Krasnokutskaya, E. A.; Poleshchuk, O. K.;
Lesina, Y. A.; Chaikovskii, V. K. Russ. Chem. Bull. 2006, 55, 1328.
(13) Combe, S. H.; Hosseini, A.; Parra, A.; Schreiner, P. R. J. Org.
Chem. 2017, 82, 2407.
(14) (a) Ribeiro, R. d. S.; Esteves, P. M.; de Mattos, M. C. S.
Tetrahedron Lett. 2007, 48, 8747. (b) Gottardi, W. Monatsh. Chem.
1970, 101, 655.
(15) Jakab, G.; Hosseini, A.; Hausmann, H.; Schreiner, P. R. Synthesis
2013, 45, 1635.
bond, which is the driving force of the reaction (ΔG298K
=
−20.0 kcal mol−1).
In summary, we present a method for the direct C−H bond
iodination of electron-deficient arenes. Iodinating agent 3 can
be activated by a carboxylic acid, polarizing the N−I bond
through simultaneous hydrogen and halogen bonding.
Compared to other methods, our protocol enables convenient
product isolation without postmodification.
(16) (a) Chaikovskii, V. K.; Filimonov, V. D.; Funk, A. A.;
Skorokhodov, V. I.; Ogorodnikov, V. D. Russ. J. Org. Chem. 2007,
43, 1291. (b) Gottardi, W. Monatsh. Chem. 1975, 106, 1203.
(17) (a) Groweiss, A. Org. Process Res. Dev. 2000, 4, 30. (b) de
Almeida, L. S.; de Mattos, M. C. S.; Esteves, P. M. Synlett 2013, 24,
603.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(18) Galabov, B.; Nikolova, V.; Wilke, J. J.; Schaefer, H. F.; Allen, W.
D. J. Am. Chem. Soc. 2008, 130, 9887.
Experimental section, spectra of all compounds,
computations and procedures, Cartesian coordinates,
and absolute energies of all optimized structures (PDF)
(19) Nam, P.-C.; Nguyen, M. T.; Chandra, A. K. J. Phys. Chem. A
2005, 109, 10342.
(20) (a) Lommerse, J. P. M.; Stone, A. J.; Taylor, R.; Allen, F. H. J.
Am. Chem. Soc. 1996, 118, 3108. (b) Cavallo, G.; Metrangolo, P.;
Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev.
2016, 116, 2478. (c) Nicolas, I.; Barriere, F.; Jeannin, O.; Fourmigue,
̀ ́
M. Cryst. Growth Des. 2016, 16, 2963. (d) Sun, X.; Wang, W.; Li, Y.;
Ma, J.; Yu, S. Org. Lett. 2016, 18, 4638.
(21) Prakash, G. K. S.; Mathew, T.; Hoole, D.; Esteves, P. M.; Wang,
Q.; Rasul, G.; Olah, G. A. J. Am. Chem. Soc. 2004, 126, 15770.
(22) Rowland, R. S.; Taylor, R. J. Phys. Chem. 1996, 100, 7384.
(23) Laurence, C.; Graton, J.; Berthelot, M.; El Ghomari, M. J. Chem.
- Eur. J. 2011, 17, 10431.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(24) Masui, M.; Ueshima, T.; Ozaki, S. J. Chem. Soc., Chem. Commun.
1983, 479.
ACKNOWLEDGMENTS
This work was supported by the Justus-Liebig University.
■
REFERENCES
■
(1) (a) Schreiner, P. R.; Lauenstein, O.; Butova, E. D.; Fokin, A. A.
Angew. Chem., Int. Ed. 1999, 38, 2786. (b) Hartung, J. Science of
Synthesis 2007, 35, 541.
(2) Niclas, H. J.; Zeuner, F.; Grundemann, E.; Zolch, L. J. Prakt.
̈
̈
Chem. 1987, 329, 400.
(3) Ross, P. L.; Johnston, M. V. J. Phys. Chem. 1995, 99, 4078.
(4) Tanner, D. D.; Gidley, G. C. J. Am. Chem. Soc. 1968, 90, 808.
(5) (a) Tanner, D. D.; Blackburn, E. V.; Reed, D. W.; Setiloane, B. P.
J. Org. Chem. 1980, 45, 5183. (b) Tanner, D. D.; Gidley, G. C.; Das,
N.; Rowe, J. E.; Potter, A. J. Am. Chem. Soc. 1984, 106, 5261.
D
Org. Lett. XXXX, XXX, XXX−XXX