preparation of these rare substances for further biological studies.
The biological activities of (ꢁ)-spiniferin-1, (+)-spiniferin-1,
(ꢀ)-spiniferin-1 and their analogues are currently under
investigation.
We gratefully acknowledge financial support of this work by
the NSFC (No. 20772140).
Notes and references
1 (a) E. L. Eliel and S. H. Wilen, Stereochemistry of Organic
Compounds, Wiley-Interscience, 1994, pp. 1170–1172; (b) K. Schlogl,
Top. Curr. Chem., 1984, 125, 27.
2 (a) E. Vogel and H. D. Roth, Angew. Chem., Int. Ed. Engl., 1964,
3, 228; (b) E. Vogel and W. A. Boll, Angew. Chem., Int. Ed. Engl.,
1964, 3, 642; (c) E. Vogel, Pure Appl. Chem., 1982, 54, 1015.
3 (a) G. Cimino, S. De Stefano, L. Minale and E. Trivellone,
Tetrahedron Lett., 1975, 16, 3727; (b) G. Cimino, S. De Stefano,
L. Minale and E. Trivellone, Experientia, 1978, 19, 1425.
4 J. A. Marshall and R. E. Conrow, J. Am. Chem. Soc., 1983,
105, 5679.
5 K. Ding, Y. S. Sun and W. S. Tian, J. Org. Chem., 2011, 76, 1495.
6 (a) W. S. Tian, Z. Lei, L. Chen and Y. Huang, J. Fluorine Chem.,
2000, 101, 305; (b) L. Chen, K. Ding and W. S. Tian, Chem.
Commun., 2003, 838.
7 (a) T. Akiyama, T. Katoh and K. Mori, Angew. Chem., Int. Ed.,
2009, 48, 4226; (b) J. Christoffers, U. Roßler and T. Werner,
Eur. J. Org. Chem., 2000, 701; (c) H. Sasai, E. Emori, T. Arai
and M. Shibasaki, Tetrahedron Lett., 1996, 37, 5561.
8 (a) D. Seebach, A. K. Beck and A. Heckel, Angew. Chem., Int. Ed.,
2001, 40, 92; (b) F. Toda and K. Tanaka, Tetrahedron Lett.,
1988, 29, 551.
Scheme 4 Syntheses of (+)-spiniferin-1 and (ꢀ)-spiniferin-1.
Reagents and conditions: (a) Pd(PPh3)4, Et3N, dioxane, 75 1C, 84%
for (+)-10, 79% for (ꢀ)-10; (b) LDA, ZnCl2, THPOCH2CHO, THF,
ꢀ78 1C, 96% for 11a, 95% for 11b; (c) p-toluenesulfonic acid, THF,
80 1C; (d) LiAlH4, THF, 40 1C; (e) CF3CF2CF2CF2SO2F, DBU,
THF, 0 1C–rt, 35% 3 steps for (+)-spiniferin-1, 31% 3 steps for
(ꢀ)-spiniferin-1.
9 O. Kuisle, E. Quinoa and R. Riguera, J. Org. Chem., 1999,
64, 8063.
10 Chiral HPLC indicated the existence of slight racemization at the
chiral center of the benzylic position in esters 9 and 90, which was
caused by the presence of DMAP during the esterification of
7 as well as the acidic conditions during the THP group removal
step. The racemization led to the decline of the optical purities of
esters 9 and 90. See ESIw for the determination of their optical
purities.
Table 1 Specific rotation of (ꢀ)-spiniferin-1a
0 h
6.5 h
15.5 h
33 h
(ꢀ)-1b
ꢀ364.2
ꢀ365.7
ꢀ372.2
b
ꢀ375.2
11 E. L. Eliel, S. H. Wilen and M. P. Doyle, Basic Organic Stereo-
chemistry, Wiley-Interscience, 2001, pp. 106–115.
12 J. S. Panek and M. A. Sparks, Tetrahedron: Asymmetry, 1990,
1, 801.
a
(ꢀ)-Spiniferin-1: c = 0.905, MeOH, 25 1C. The slight increase of
the specific rotation was due to the slow evaporation of the solvent.
13 (a) J. B. Evarts Jr. and P. L. Fuchs, Tetrahedron Lett., 2001,
42, 3673; (b) J. Tsuji, T. Yamakawa, M. Kaito and T. Mandai,
Tetrahedron Lett., 1978, 24, 2075.
the natural product (ꢀ4.2, concentration and solvent not
given),3a synthetic samples exhibited much higher rotations
(+375, c 1.01 in CHCl3, 80.6% ee and ꢀ432, c 1.06 in CHCl3,
90.8% ee).15 Given the stability of the planar chirality, we
surmised that the natural product existed in a nearly racemic
form (ca. 1% ee).
14 Vogel’s work indicated that the 1,6-methano[10]annulenes were
configurationally stable because of their high bridge inversion
energy barrier. See (a) E. Vogel, T. Schieb, W. H. Schulz,
K. Schmidt, H. Schmickler and J. Lex, Angew. Chem., Int. Ed.
Engl., 1986, 25, 723; (b) J. Scharf, K. Schlogl, M. Widhalm, J. Lex,
W. Tuckmantel, E. Vogel and F. Pertlik, Monatsh. Chem., 1986,
117, 255; (c) E. Vogel, W. Tuckmantel, K. Schlogl, M. Widhalm,
E. Kraka and D. Cremer, Tetrahedron Lett., 1984, 25, 4925;
(d) K. Schlogl, M. Widhalm, E. Vogel and M. Schwamborn,
Monatsh. Chem., 1983, 114, 605; (e) U. Kuffner and K. Schlogl,
Monatsh. Chem., 1972, 103, 1320; (f) U. Kuffner and K. Schlogl,
Tetrahedron Lett., 1971, 12, 1773.
In conclusion, the first total syntheses of Sp-(+)-spiniferin-1
and Rp-(ꢀ)-spiniferin-1 were accomplished and the natural
spiniferin-1 was shown to be nearly racemic. The stereochemical
study of enantiomerically enriched spiniferin-1 indicated that
the naturally occurring planar chirality is stable under mild
conditions. The divergent syntheses of (+)-spiniferin-1 and its
enantiomer in 5.4% and 4.7% respective overall yields over
9 steps could provide an approach for the large scale
15 The low diastereomeric optical purity of ester 9 or 90 accounts for
the low ee value of (+)-spiniferin-1 or (ꢀ)-spiniferin-1 since no
further racemization was observed in all the reactions shown in
Scheme 4. See ESIw for details.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10437–10439 10439