A. Islas-Jácome et al. / Tetrahedron Letters 52 (2011) 5245–5248
5247
2003, 4101–4111; (c) Dömling, A. Chem. Rev. 2006, 106, 17–89; (d) Dömling, A.
Angew. Chem., Int. Ed. 2000, 39, 3168–3210.
7. (a) Marcaccini, S.; Torroba, T. Post-condensation Modifications of the Passerini
and Ugi Reactions In Zhu, J., Bienaymé, H., Eds.; Wiley-VCH: Weinheim, 2005.
pp 33–75; (b) Akritopoulou-Zanze, I.; Djuric, S. W. Heterocycles 2007, 73, 125–
147.
8. (a) Kappe, C. O.; Dallinger, D. Mol. Diversity 2009, 13, 71–193; (b) Di Mauro, E.
F.; Kennedy, J. M. J. Org. Chem. 2007, 72, 1013–1016; (c) Kremsner, J. M.;
Stadler, A.; Kappe, C. O. Top. Curr. Chem. 2006, 266, 233–278; (d) Kappe, C. O.
Angew. Chem., Int. Ed. 2004, 43, 6250–6284; (e) Tye, H.; Whittaker, M. Org.
Biomol. Chem. 2004, 2, 813–815; (f)Microwaves in Organic Synthesis; Loupy, A.,
Ed.; Wiley-VCH: Weinheim, 2002; (g) Hoel, A. M. L.; Nielsen, J. Tetrahedron Lett.
1999, 40, 3941–3944.
Under these conditions, the desired tetrahydroisoquinolin-
pyrrolopyridinones 3b–c were prepared in moderate to good yields
using pyrrolo[3,4-b]pyridin-5-ones 9b–c as starting materials
(Table 2, entries 3 and 4).
The SEAr Pummerer-type cyclization proceeds effectively upon
activation of the reaction center in the aryl responsible for the
nucleophilic attack by electron-releasing groups (ERG’s).28 In this
context, the differences among the observed yields during the
synthesis of compounds 3a–c from the corresponding sulfoxides
10a–c (72, 62, 38%) could be explained. The di-oxa bridge was a
better substituent than the methoxy group, and this latter was
better than hydrogen during the last cyclization step.
9. Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51–80.
10. (a) El Kam, L.; Grimaud, L.; Miranda, L. D.; Vieu, E. Tetrahedron Lett. 2006, 47,
8259–8261; (b) El Kaim, L.; Grimaud, L.; Vieu, E. Org. Lett. 2007, 9, 4171–4173.
11. (a) Cristau, P.; Vors, J. P.; Zhu, J. Org. Lett. 2001, 3, 4079–4082; (b) Tempest, P.;
Ma, V.; Kelly, M. G.; Jones, W.; Hulme, C. Tetrahedron Lett. 2001, 42, 4963–4968;
(c) Cristau, P.; Vors, J. P.; Zhu, J. Tetrahedron 2003, 59, 7859–7870; (d) Spatz, J.
H.; Umkehrer, M.; Kalinski, C.; Ross, G.; Burdack, C.; Kolb, J.; Bach, T.
Tetrahedron Lett. 2007, 48, 8060–8064.
All
tetracycles
containing
the
tetrahydroisoquinolin-
pyrrolopyridinone system were obtained as a single diastereomer,
and their stereochemistry was deduced from mechanistic consid-
erations and NMR studies. The observed coupling constant
between H-9 and H-10 (JH9–H10 = 7.8 Hz) indicated an anti relation-
ship between these two protons. The relative stereochemistry of all
new compounds 3a–c was deduced to be (9S⁄–10R⁄) by compari-
son with the literature data.18
The scope of this multicomponent reaction was evaluated by
including the S-oxidation and the Pummerer cyclization in a full
one-pot process. Under the conditions established previously for
the multistep synthesis, the aldehyde 4, piperonylamine (5a), iso-
nitrile 6, and Sc(OTf)3 were sealed in a reaction tube in toluene,
and the solution was MW-irradiated for 45 min at 68 °C. The
maleic anhydride 8 was introduced, and MW-irradiation continued
at 68 °C for an additional 15 min. m-CPBA was then introduced,
and the reaction was stirred at 0 °C for 2 h. Finally, DIEA (6.0 equiv)
and TMSOTf (6.0 equiv) were added, and the reaction mixture was
stirred at 0 °C for 16 h to yield the polyheterocycle 3a in 12% over-
all yield in a one-pot process.
12. (a) Ugi, I.; Schmid, T. J. Prakt. Chem. 1997, 339, 652–655; (b) Marcaccini, S.;
Pepino, R.; Cruz Pozo, M. Tetrahedron Lett. 2001, 42, 2727–2728; (c) Umkehrer,
M.; Kolb, J.; Burdack, C.; Ross, G.; Hiller, W. Tetrahedron Lett. 2004, 45, 6421–
6424; (d) Neo, A. G.; Delgado, J.; Polo, C.; Marcaccini, S.; Marcos, C. F.
Tetrahedron Lett. 2005, 46, 23–26; (e) Golebiowski, A.; Klopfenstein, S. R.; Shao,
X.; Chen, J. J.; Colson, A. O.; Grieb, A. L.; Russell, A. F. Org. Lett. 2000, 2, 2615–
2617; (f) Golebiowski, A.; Jozwik, J.; Klopfenstein, S. R.; Colson, A. O.; Grieb, A.
L.; Russell, A. F.; Rastogi, V. L.; Diven, C. F.; Portlock, D. E.; Chen, J. J. J. Comb.
Chem. 2002, 4, 584–590; (g) Rossen, K.; Sager, J.; DiMichele, L. M. Tetrahedron
Lett. 1997, 38, 3183–3186; (h) de Greef, M.; Abeln, S.; Belkasmi, K.; Dömling, A.;
Orru, R. V. A.; Wessjohann, L. A. Synthesis 2006, 3997–4004; (i) Xing, X.; Wu, J.;
Feng, G.; Dai, W.-M. Tetrahedron 2006, 62, 6774–6781; (j) Banfi, L.; Basso, A.;
Guanti, G.; Kielland, N.; Repetto, C.; Riva, R. J. Org. Chem. 2007, 72, 2151–2160.
13. (a) Sun, X.; Janvier, P.; Zhao, G.; Bienaymé, H.; Zhu, J. Org. Lett. 2001, 3, 877–
880; (b) Akritopoulou-Zanze, I.; Gracias, V.; Moore, J. D.; Djuric, S. W.
Tetrahedron Lett. 2004, 45, 3421–3423; (c) Akritopoulou-Zanze, I.; Gracias, V.;
Djuric, S. W. Tetrahedron Lett. 2004, 45, 8439–8441; (d) Paulvannan, K. J. Org.
Chem. 2004, 69, 1207–1214; (e) Gracias, V.; Darczak, D.; Gasiecki, A. F.; Djuric,
S. W. Tetrahedron Lett. 2005, 46, 9053–9056; (f) Pirali, T.; Tron, G. C.; Zhu, J. Org.
Lett. 2006, 8, 4145–4148; (g) Akritopoulou-Zanze, I.; Whitehead, A.; Waters, J.
E.; Henry, R. F.; Djuric, S. W. Org. Lett. 2007, 9, 1299–1302.
14. (a) Piscopio, A. D.; Miller, J. F.; Koch, K. Tetrahedron 1999, 55, 8189–8198; (b)
Beck, B.; Larbig, G.; Mejat, B.; Magnin-Lachaux, M.; Picard, A.; Herdtweck, E.;
Dömling, A. Org. Lett. 2003, 5, 1047–1050; (c) Hebach, C.; Kazmaier, U. Chem.
Commun. 2003, 596–597; (d) Sello, J. K.; Andreana, P. R.; Lee, D.; Schreiber, S. L.
Org. Lett. 2003, 5, 4125–4127; (e) Banfi, L.; Basso, A.; Guanti, G.; Riva, R.
Tetrahedron Lett. 2003, 44, 7655–7658; (f) Krelaus, R.; Westermann, B.
Tetrahedron Lett. 2004, 45, 5987–5990; (g) Dietrich, S. A.; Banfi, L.; Basso, A.;
Damonte, G.; Guanti, G.; Riva, R. Org. Biomol. Chem. 2005, 3, 97–106; (h)
Gracias, V.; Gasiecki, A. F.; Djuric, S. W. Tetrahedron Lett. 2005, 46, 9049–9052;
(i) Ribelin, T. P.; Judd, A. S.; Akritopoulou Zanze, I.; Henry, R. F.; Cross, J. L.;
Whittern, D. N.; Djuric, S. W. Org. Lett. 2007, 9, 5119–5122.
15. (a) Zamudio-Medina, A.; García-González, M. C.; Padilla, J.; González-Zamora,
E. Tetrahedron Lett. 2010, 51, 4837–4839; (b) El Kaim, L.; Gámez-Montaño, R.;
Laurence, G.; Ibarra-Rivera, T. Chem. Commun. 2008, 11, 1350–1352.
16. (a) Zhang, W.; Pugh, G. Tetrahedron 2003, 59, 3009–3018; (b) Grigg, R.; Savic,
V.; Tambyrajah, V. Tetrahedron Lett. 2000, 41, 3003–3006; (c) Hucher, N.; Daich,
A.; Decroix, B. Org. Lett. 2000, 2, 1201–1204; (d) Zhang, W.; Pugh, G.
Tetrahedron Lett. 1999, 40, 7591–7594; (e) García, A.; Rodríguez, D.; Castedo,
L.; Saá, C.; Domínguez, D. Tetrahedron Lett. 2001, 42, 1903–1905; (f) Kim, G.;
Kim, J. H.; Kim, W. J.; Kim, Y. A. Tetrahedron Lett. 2003, 44, 8207–8209; (g)
Wada, Y.; Nishida, N.; Kurono, N.; Ohkuma, T.; Orito, K. Eur. J. Org. Chem. 2007,
4320–4327.
In summary, the multicomponent domino process used in the
present work, which involved a combination of Ugi-3CR, aza
Diels–Alder cycloaddition, S-oxidation, and Pummerer-type cycli-
zation under microwave-assistance, produced three fused rings
by creating seven new chemical bonds via the simple loss of water
and CO2. The obtained polyheterocycles containing the tetrahydro-
isoquinolin-pyrrolopyridinone system were produced in good
yields, considering the molecular complexity of the final com-
pounds. The operational simplicity of this synthesis is highly
attractive for a range of diversity-oriented synthetic approaches.
Acknowledgments
Financial support by the Consejo Nacional de Ciencia y Tec-
nología (CONACyT, project 51346-Q and J-50922) and a scholar-
ship awarded to A.I.-J. (227423) are gratefully acknowledged.
E.G.-Z. thanks A. Gutiérrez-Carrillo for NMR spectra and Professors
J. Tamariz-Mascarúa and A. Benavides-Macias for their fruitful
comments.
17. Brown, D.; Grigg, R.; Sridharan, V.; Tambyrajah, V. Tetrahedron Lett. 1995, 36,
8137–8140.
18. Gámez-Montaño, R.; Zhu, J. Chem. Commun. 2002, 20, 2448–2449.
19. (a) Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem. 1995,
60, 7272–7276; (b) Ozanne-Beaudenon, A.; Quideau, S. Tetrahedron Lett. 2006,
47, 5869–5873.
References and notes
20. Fayol, A.; Housseman, C.; Sun, X.; Janvier, P.; Bienaymé, H.; Zhu, J. Synthesis
2005, 1, 161–165.
21. Sun, X.; Janvier, P.; Zhao, G.; Bienayme, H.; Zhu, J. Org. Lett. 2001, 3, 877–880.
22. González-Lopez, M.; Show, J. T. Chem. Rev. 2009, 109, 164–189.
23. Janvier, P.; Sun, X.; Bienayme, H.; Zhu, J. J. Am. Chem. Soc. 2002, 124, 2560–
2567.
24. (a) Gámez-Montaño, R.; González-Zamora, E.; Potier, P.; Zhu, J. Tetrahedron
2002, 58, 6351–6358; (b) González-Zamora, E.; Fayol, A.; Bois-Choussy, M.;
Chiaroni, A.; Zhu, J. Chem. Commun. 2001, 1684–1685.
25. Kobayashi, S.; Sigiura, M.; Kitagawa, H.; Lam, W. Chem. Rev. 2002, 102, 2227–
2302.
1. Nefzi, A.; Ostresh, J. M.; Houghten, R. A. Chem. Rev. 1997, 97, 449–472.
2. Ertl, P.; Jelfs, S.; Mühlbacher, J.; Schuffenhauer, A.; Selzer, P. J. Med. Chem. 2006,
49, 4568–4573.
3. Somei, M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278–311.
4. Nielsen, T. E.; Meldal, M. Curr. Opin. Discov. Devel. 2009, 12, 798–810.
5. (a) Burke, S. D.; Piscopio, A. D.; Kort, M. E.; Matulenko, M. A.; Parker, M. H.;
Armistead, D. M.; Shankaran, K. J. Org. Chem. 1994, 56, 332–347; (b) Garçon, S.;
Vassiliou, S.; Cavicchioli, M.; Hartmann, B.; Monteiro, N.; Balme, G. J. Org. Chem.
2001, 66, 4063–4069; (c) Wang, Y.; Dong, X. Y.; Larock, R. C. J. Org. Chem. 2003,
68, 3090–3098; (d) Stragies, R.; Blechert, S. J. Am. Chem. Soc. 2000, 122, 9584–
9591; (e) Bowers, M. M.; Carroll, P.; Joullié, M. M. J. Am. Chem. Soc. 1999, 121,
6355–6366.
26. Bousquet, T.; Fleury, J.-F.; Daïch, A.; Netchitaïlo, P. Tetrahedron 2006, 62, 706–
715.
6. (a)Multicomponent Reactions; Zhu, J., Bienaymé, H., Eds.; Wiley-VCH:
Weinheim, 2005; (b) Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem.
27. Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter, D. J. Angew. Chem., Int. Ed.
2010, 49, 5832–5844.