Scheme 1. Retrosynthetic Plan for Psymberin (1)
Scheme 2. Synthesis of Hydroxy Ketone 5
that it would be challenging to stereoselectively synthesize
2,6-trans-3,3-dimethyl tetrahydropyran 3 in a substrate-
controlled manner. Instead, we decided to explore the organo-
catalytic oxa-conjugate addition reaction to prepare 3 in a
reagent-controlled manner. We anticipated that the key
intermediates 3 and 4 could be derived from the common
chiral epoxide 6.
conjugate addition of an oxygen nucleophile to R,β-
unsaturated carbonyl compounds (oxa-conjugate addition
reaction) is a direct and efficient way to tetrahydropyrans,
the oxa-conjugate addition reaction has never been used
for the synthesis of 1.
The synthesis of psymberin (1) started with the prepara-
tion of hydroxy ketone 5 (Scheme 2). Coupling7b,8 of allyl
alcohol 89,10 (8 steps from the commercially available 2,2-
dimethyl-1,3-propanediol) with the readily available chiral
epoxide 710,11 (3 steps from the commercially available
(S)-(þ)-glycidyl benzyl ether) provided 9. Hydrolysis of
the dithiane group of 9, stereoselective reduction to 1,3-syn
diol 11 (dr >20:1),12 and MnO2-oxidation of the second-
ary alcohol 11set the stage for the key organocatalytic oxa-
conjugate addition reaction.
With an interest in facilitating access to biologically
important natural products with tetrahydropyrans,7
we designed our retrosynthetic plan for 1 relying on the
oxa-conjugate addition reaction of R,β-unsaturated ke-
tone 5 catalyzed by primary diamine for the stereoselective
synthesis of 2,6-trans-3,3-dimethyl tetrahydropyran 3 em-
bedded in 1 (Scheme 1). Because of our previous report on
the stereoselective synthesis of 2,6-cis-3,3-dimethyl tetra-
hydropyrans through the tandem oxidation/oxa-Michael
reaction of R,β-unsaturated aldehyde,7d we envisioned
Due to the steric congestion of ketones in iminium
formation, we attempted the oxa-conjugate addition
reaction catalyzed by primary amine (Table 1).13ꢀ15 The
organocatalytic oxa-conjugate addition reaction of 5 in the
presence of (1R,2R)-1,2-diphenylethane-1,2-diamine (A)16
and TFA smoothly proceeded but afforded the undesired
2,6-cis-3,3-dimethyl tetrahydropyran 12 as a single diaster-
eomer (entry 1). When HOAc was used in the reaction as
(6) For examples of tetrahydropyran synthesis, see: (a) Minami, T.;
Moriyama, A.; Hanaoka, M. Synlett 1995, 663–665. (b) Matsukura, H.;
Morimoto, M.; Koshino, H.; Nakata, T. Tetrahedron Lett. 1997, 38,
5545–5548. (c) Cloninger, M. J.; Overman, L. E. J. Am. Chem. Soc. 1999,
121, 1092–1093. (d) Gruttadauria, M.; Lo Meo, P.; Noto, R. Tetrahe-
dron 1999, 55, 14097–14110. (e) Liu, P.; Jacobsen, E. N. J. Am. Chem.
Soc. 2001, 123, 10772–10773. (f) Marumoto, S.; Jaber, J. J.; Vitale, J. P.;
Rychnovsky, S. D. Org. Lett. 2002, 4, 3919–3922. (g) Wong, M.-K.;
Chung, N.-W.; He, L.; Yang, D. J. Am. Chem. Soc. 2003, 125, 158–162.
(h) Lucas, B. S.; Burke, S. D. Org. Lett. 2003, 5, 3915–3918. (i) Clark,
J. S.; Whitlock, G.; Jiang, S.; Onyia, N. Chem. Commun. 2003, 2578–
2579. (j) Hartung, J.; Gottwald, T. Tetrahedron Lett. 2004, 45, 5619–
5621. (k) Smith, A. B., III; Fox, R. J. Org. Lett. 2004, 6, 1477–1480. (l)
Lee, E. Pure Appl. Chem. 2005, 77, 2073–2081. (m) Morris, W. J.; Custar,
D. W.; Scheidt, K. A. Org. Lett. 2005, 7, 1113–1116. (n) Chan, K.-P.;
(8) (a) Groebel, B. T.; Seebach, D. Synthesis 1977, 357–402. (b) Yus,
ꢀ
M.; Najera, C.; Foubelo, F. Tetrahedron 2003, 59, 6147–6212. (c) Smith,
A. B., III; Adams, C. M. Acc. Chem. Res. 2004, 37, 365–377.
(9) (a) Armesto, D.; Horspool, W. M.; Gallego, M. G.; Agarrabeitia,
A. R. J. Chem. Soc., Perkin Trans. 1 1992, 163–169. (b) Armesto, D.;
Gallego, M. G.; Horspool, W. M.; Agarrabeitia, A. R. Tetrahedron
1995, 51, 9223–9240.
ꢀ
Loh, T.-P. Org. Lett. 2005, 7, 4491–4494. (o) Alonso, D.; Perez, M.;
ꢀ
Gomez, G.; Covelo, B.; Fall, Y. Tetrahedron 2005, 61, 2021–2026. (p)
Lucas, B. S.; Luther, L. M.; Burke, S. D. J. Org. Chem. 2005, 70, 3757–
3760. (q) Floreancig, P. E. Synlett 2007, 191–203. (r) Smith, A. B., III;
Fox, R. J.; Razler, T. M. Acc. Chem. Res. 2008, 41, 675–687. (s) Bahnck,
K. B.; Rychnovsky, S. D. J. Am. Chem. Soc. 2008, 130, 13177–13181. (t)
Lu, L.-Q.; Xing, X.-N.; Wang, X.-F.; Ming, Z.-H.; Wang, H.-M.; Xiao,
W.-J. Tetrahedron Lett. 2008, 49, 1631–1635. (u) Hiebel, M.-A.; Pelotier,
B.; Goekjian, P.; Piva, O. Eur. J. Org. Chem. 2008, 713–720. (v) Trost,
B. M.; Gutierrez, A. C.; Livingston, R. C. Org. Lett. 2009, 11, 2539–
2542.
(7) (a) Kim, D.; Lee, H.; Kim, K. W.; Park, J.; Kim, H.; Kim, S.; Hu,
X.; Yang, W.; Hong, J. Angew. Chem., Int. Ed. 2008, 47, 4200–4203. (b)
Kim, H.; Park, Y.; Hong, J. Angew. Chem., Int. Ed. 2009, 48, 7577–7581.
(c) Lee, K.; Kim, H.; Hong, J. Org. Lett. 2009, 11, 5202–5205. (d) Kim,
H.; Hong, J. Org. Lett. 2010, 12, 2880–2883. (e) Lee, K.; Kim, H.; Hong,
J. Org. Lett. 2011, 13, 2722–2725. (f) Park, H.; Kim, H.; Hong, J. Org.
Lett. 2011, 13, 3742–3745.
(10) See the Supporting Information for preparation.
(11) (a) Whitehead, A.; McParland, J. P.; Hanson, P. R. Org. Lett.
€
2006, 8, 5025–5028. (b) Trost, B. M.; Nubling, C. Carbohyd. Res. 1990,
202, 1–12. (c) Rama Rao, A. V.; Subhas Bose, D.; Gurjar, M. K.;
Ravindranathan, T. Tetrahedron 1989, 45, 7031–7040. (d) Tanabe, G.;
Otani, T.; Cong, W.; Minematsu, T.; Ninomiya, K.; Yoshikawa, M.;
Muraoka, O. Bioorg. Med. Chem. Lett. 2011, 21, 3159–3162.
(12) Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro,
M. J. Tetrahedron Lett. 1987, 28, 155–158.
(13) For reviews on the organocatalysis by primary amines, see: (a)
Chen, Y.-C. Synlett 2008, 1919–1930. (b) Bartoli, G.; Melchiorre, P.
Synlett 2008, 1759–1772. (c) Peng, F.; Shao, Z. J. Mol. Catal. A-Chem.
2008, 285, 1–13. (d) Xu, L.-W.; Luo, J.; Lu, Y. Chem. Commun. 2009,
1807–1821.
Org. Lett., Vol. 13, No. 21, 2011
5817