Organometallics
Article
Synthesis of 2·CH2PPh3. In a glovebox, [Y{N(SiMe3)2}2]2 (460 mg,
0.81 mmol) and Ph3PCH2 (0.22 g, 0.81 mmol) were weighed out
separately and transferred to a Schlenk. The Schlenk was sealed,
removed from the box, and attached to a vacuum line, where dry
diethyl ether (5 mL) was added under a purge of argon. The mixture
was agitated and left to stand for 1 h at 25 °C. The solution was
removed under vacuum, and the product was extracted into n-hexane
(5 mL). The solution was filtered, reduced in volume, and stored at
−20 °C to produce yellow crystals. The crystals were isolated through
filtration and dried under vacuum to give 2·CH2PPh3 (404 mg, 0.48
Computed structures (MOL)
Crystallographic data for 2·CH2PPh3 and 3a,b (CIF)
AUTHOR INFORMATION
Corresponding Author
Funding
M.R.C. acknowledges the Royal Society for provision of a
University Research Fellowship. A.E.N. is grateful to Imperial
College London for sponsoring a Ph.D. studentship and the
EPSRC for provision of a prize fellowship. We are also grateful
to the Nuffield Foundation for a summer bursary for W.C.
■
1
mmol, 59%). H NMR (400 MHz, C6D6, 298 K): δ 0.45 (s, 54H),
2
31
1
1.23 (br d, 2H, J P− H = 13.6 Hz), 7.00−7.05 (m, 9H), 7.52−7.61 (m,
6H). 13C NMR (101 MHz, C6D6, 298 K): δ 6.5, 8.5 (br), 129.0 (d,
J
= 11.7 Hz), 132.4, 133.0 (d, J
= 9.7 Hz). 31P NMR (162
31P−13
C
31P−13
C
MHz, C6D6, 298 K): δ + 30.5. Anal. Calcd for C37H71N3PSi6Y: C,
52.51; H, 8.46; N, 4.96. Found: C, 52.31, H, 8.45; N, 4.98.
Notes
Synthesis of 3a. In a glovebox, [Y{N(SiMe3)2}2]2 (400 mg, 0.70
mmol) and Ph3PCH2 (194 mg, 0.70 mmol) were weighed into a 20
mL scintillation vial. Dry diethyl ether (5 mL) was added, followed by
piperidine (83 μL, 0.84 mmol, 1.2 equiv). The mixture was agitated
and left to stand for 2 h at 25 °C. The volatiles were removed under
vacuum, and the product was extracted into n-hexane (5 mL). The
solution was filtered, reduced in volume, and stored at −20 °C to
produce pale yellow crystals. The crystals were isolated through
filtration and dried under vacuum to give 3a (269 mg, 0.35 mmol,
The authors declare no competing financial interest.
REFERENCES
■
(1) Brook, M. A. Silicon in Organic, Organometallic and Polymer
Chemistry; Wiley: Hoboken, NJ, 2000.
(2) Lekishvili, N.; Kerherashvili, M.; Lekishvili, G. Asian J. Chem.
2010, 22, 4141−4149.
(3) Grellier, M.; Ayed, T.; Barthelat, J.-C.; Albinati, A.; Mason, S.;
Vendier, L.; Coppel, Y.; Sabo-Etienne, S. J. Am. Chem. Soc. 2009, 131,
7633−7640.
1
50%). H NMR (400 MHz, C6D6, 298 K): δ 0.47 (s, 36H), 1.20 (dd,
2 31
1
2
89
1
2H, J P− H = 17.6 Hz, J Y− H = 2.8 Hz), 1.52−1.58 (m, 4H), 1.67−
(4) Kocienski, P. J. Protecting Groups; Georg Thieme Verlag:
Stuttgart, Germany, 1994.
1.72 (m, 2H), 3.36 (m, 4H), 7.01−7.03 (m, 9H), 7.45−7.50 (m, 6H).
13C NMR (101 MHz, C6D6, 298 K): δ 5.8, 9.1 (dd, 1J
C = 1J
89Y−13
31P−13
C
(5) (a) Saam, J. C.; Speier, J. L. J. Org. Chem. 1959, 24, 119−120.
(b) Sommer, L. H.; Citron, J. D. J. Org. Chem. 1967, 32, 2470−2472.
(6) Wang, W.-D.; Eisenberg, R. Organometallics 1991, 10, 2222−
2227.
(7) (a) Blum, Y.; Laine, R. M. Organometallics 1986, 5, 2081−2086.
(b) Biran, C.; Blum, Y. D.; Glaser, R.; Tse, D. S.; Youngdahl, K. A.;
Laine, R. M. J. Mol. Catal. 1988, 48, 183−197. (c) Gutsulyak, D. V.;
Vyboishchikov, S. F.; Nikonov, G. I. J. Am. Chem. Soc. 2010, 132,
31P−13
= 31.4 Hz), 27.0, 29.3, 51.9, 127.7, 128.0, 129.4 (d, J
132.6 (d, J
MHz, C6D6, 298 K): δ +32.4 (d, J
C = 11.8 Hz),
C = 9.7 Hz). 31P NMR (162
= 5.2 Hz). Anal. Calcd for
Y
31P−13
31P−13
31P−89
C = 2.4 Hz), 132.9 (d, J
2
C36H62N3PSi4Y: C, 56.22; H, 8.13; N, 5.46. Found: C, 56.56; H, 8.24;
N, 5.40.
Synthesis of 3b. In a glovebox, [Y{N(SiMe3)2}2]2 (150 g, 0.26
mmol) and Ph3PCH2 (73 mg, 0.26 mmol) were weighed into a 20 mL
scintillation vial. Dry diethyl ether (5 mL) was added, followed by tert-
butylamine (33 μL, 0.32 mmol, 1.2 equiv). The mixture was agitated
and left to stand for 2 h at 25 °C. The volatiles were removed under
vacuum, and the product was extracted into n-hexane (5 mL). The
solution was filtered, reduced in volume, and stored at −20 °C to
produce pale yellow crystals. The crystals were isolated through
filtration and dried under vacuum to give 3b (138 mg, 0.18 mmol,
5950−5951. (d) Konigs, C. D. F.; Muller, M. F.; Aiguabella, N.; Klare,
̈
H. F. T.; Oestreich, M. Chem. Commun. 2013, 49, 1506−1508.
(8) (a) Liu, H. Q.; Harrod, J. F. Organometallics 1992, 11, 822−827.
(b) He, J.; Liu, H. Q.; Harrod, J. F.; Hynes, R. Organometallics 1994,
13, 336−343. (c) Liu, X.; Wu, Z.; Peng, Z.; Wu, Y.-D.; Xue, Z. J. Am.
Chem. Soc. 1999, 121, 5350−5351. (d) Gauvin, F.; Woo, H. G. Adv.
Organomet. Chem. 1998, 42, 363−405.
1
69%). H NMR (400 MHz, C6D6, 298 K): δ 0.46 (s, 36H), 1.13 (dd,
2
2
31P−1H
89Y−1H
= 2.4 Hz), 1.37 (s, 9H), 2.18 (d, 1H,
(9) Liu, H. Q.; Harrod, J. F. Can. J. Chem. 1992, 70, 107−110.
(10) (a) Dash, A. K.; Wang, J. X.; Berthet, J. C.; Ephritikhine, M.;
Eisen, M. S. J. Organomet. Chem. 2000, 604, 83−98. (b) Wang, J. X.;
Dash, A. K.; Berthet, J. C.; Ephritikhine, M.; Eisen, M. S. J. Organomet.
Chem. 2000, 610, 49−57.
(11) (a) Tsuchimoto, T.; Iketani, Y.; Sekine, M. Chem. - Eur. J. 2012,
18, 9500. (b) Greb, L.; Tamke, S. Chem. Commun. 2014, 50, 2318−
2320.
2H, J
J
= 17.6 Hz, J
Y− H = 2.4 Hz), 7.01−7.04 (m, 9H), 7.52−7.58 (m, 6H). 13C NMR
2
89
1
(101 MHz, C6D6, 298 K): δ 6.0, 9.0 (dd, 1J
C = 1J
31P−13
89Y−13
C = 30.5 Hz),
31P−13
31P−13
C = 2.4 Hz), 133.0 (d,
36.2, 129.3 (d, J
C = 11.8 Hz), 132.6 (d, J
J
= 9.7 Hz). 31P NMR (162 MHz, C6D6, 298 K): δ +32.5 (d,
31P−13
C
31P−89
2J
= 4.9 Hz). Due to the air-sensitive nature of this compound,
Y
repeated attempts to obtain satisfactory elemental analysis failed.
DFT Studies. Calculations were conducted in Gaussian09. All
minima were confirmed by frequency calculations, and where
applicable solid-state data were used as an input for the atom
coordinates. Geometry optimizations were performed using the hybrid
Becke three-parameter functional with Lee−Yang−Parr correlation
(B3LYP). A hybrid 6,31G+(d,p) (C, H, N, Si, P) and LanL2DZ (Y)
basis set was used. A (benzene) solvent correction was applied by
calculating single-point energies of the optimized structures employing
the polarizable continuum model in Gaussian 09.
(12) Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Planeix, J. M.; Vioux,
A. J. Organomet. Chem. 1991, 406, C1−C4.
(13) (a) Buch, F.; Harder, S. Organometallics 2007, 26, 5132−5135.
(b) Dunne, J. F.; Neal, S. R.; Engelkemier, J.; Ellern, A.; Sadow, A. D. J.
Am. Chem. Soc. 2011, 133, 16782−16785. (c) Hill, M. S.; Liptrot, D. J.;
MacDougall, D. J.; Mahon, M. F.; Robinson, T. P. Chem. Sci. 2013, 4,
4212−4222. (d) Bellini, C.; Carpentier, J.-F.; Tobisch, S.; Sarazin, Y.
Angew. Chem., Int. Ed. 2015, 54, 7679−7683.
(14) (a) Takaki, K.; Kamata, T.; Miura, Y.; Shishido, T.; Takehira, K.
J. Org. Chem. 1999, 64, 3891−3895. (c) Xie, W.; Hu, H.; Cui, C.
Angew. Chem., Int. Ed. 2012, 51, 11141−11144.
(15) (a) Crimmin, M. R.; White, A. J. P. Chem. Commun. 2012, 48,
1745−1747. (b) Nako, A. E.; White, A. J. P.; Crimmin, M. R. Chem.
Sci. 2013, 4, 691−695.
(16) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673−686.
(b) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan,
M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem.
Soc. 1987, 109, 203−219.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Full experimental and computational details and
characterization data (PDF)
F
Organometallics XXXX, XXX, XXX−XXX