ORGANIC
LETTERS
2011
Vol. 13, No. 21
5804–5807
N-Bromosuccinimide Promoted One-Pot
Synthesis of Guanidine: Scope and
Mechanism
Ling Zhou, Jie Chen, Jing Zhou, and Ying-Yeung Yeung*
3 Science Drive 3, Department of Chemistry, National University of Singapore,
Singapore 117543
Received September 5, 2011
ABSTRACT
A novel electrophilic one-pot guanidine synthesis has been developed using an olefin, a cyanimide, an amine, and N-bromosuccinimide. A number
of guanidine derivatives were prepared with good to excellent yields. An rTRTVI precursor was also prepared based on this useful process.
Guanidine is an important class of nitrogen-containing
heterocyclic compounds, which is the fundamental unit of
many natural products, biologically active molecules, and
metal complexation ligands.1 Due to its strong basicity,
guanidine is also considered as an organic superbase that is
useful in both stoichiometric and catalytic deprotonation
processes.2 Guanidine is also an attractive scaffold that is
found in chiral auxiliaries3 and chiral Brønsted base organo-
catalysts.4
Compared to other heterocyclic compounds’ syntheses,5
the synthetic methodologies for guanidine are limited to
several representative approaches.1iÀk,3,4 Additionally, the
demand for more environmentally benign processes has
emerged in recent years due to the concern for sustainable
development.6 Herein we report a facile and efficient ap-
proach toward guanidine using a one-pot multicomponent
strategy.
(1) (a) Pearson, W. H.; Lian, B. W.; Bergmeier, S. C. In Comprehen-
sive Heterocyclic Chemistry II, Vol. 1A; Padwa, A., Ed.; Pergamon Press:
Oxford, UK, 1996; pp 1À60. (b) Rai, K. M. L.; Hassner, A. In Com-
prehensive Heterocyclic Chemistry II, Vol. 1A; Padwa, A., Ed.; Pergamon
Press: Oxford, U.K., 1996; pp 61À96. (c) Grimmett, M. R. In Compre-
hensive Heterocyclic Chemistry II, Vol. 3; Katritsky, A. R., Scriven,
E. F. V., Eds.; Pergamon: Oxford, 1996; pp 77À220. (d) Berlinck,
R. G. S.; Burtoloso, A. C. B.; Kossuga, M. H. Nat. Prod. Rep. 2008, 25,
919–954. (e) Berlinck, R. G. S.; Kossuga, M. H. Nat. Prod. Rep. 2005, 22,
516–550. (f) Nagasawa, K.; Hashimoto, Y. Chem. Rec. 2003, 3, 201–211.
(g) Bellina, F.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 4571–
4624. (h) De Luca, L. Curr. Med. Chem. 2006, 13, 1–23. (i) Suhs, T.;
Koenig, B. Mini Rev. Org. Chem. 2006, 3, 315–331. (j) Sullivan, J. D.;
Giles, R. L.; Looper, R. E. Curr. Bioact. Compd. 2009, 5, 39–78.
(k) Al Mourabit, A.; Potier, P. Eur. J. Org. Chem. 2001, 237–243.
(2) (a) Kumamoto, T. In Superbases for Organic Synthesis: Guani-
dines, Amidines, Phosphazenes and Related Organoctalysts; Ishikawa, I.,
Ed.; John Wiley & Sons Press: West Sussex, U.K., 2009; pp 295À313.
(b) Ishikawa, T.; Kumamoto, T. Synthesis 2006, 737–752.
Recently, we have reported a novel electrophilic Br
initiated cascade, which is applicable to the synthesis of
aminoalkoxylation and imidazolines.7 Indeed, we found
that the same protocol can be applied to the construction
of a guanidine skeleton.
Based on our previous study on the one-pot imidazoline
synthesis,7a we modified the system by replacing the nitrile
(4) Leow, D.; Tan, C.-H. Chem.;Asian J. 2009, 4, 488–507.
(5) (a) Kemp, J. E. In Comprehensive Organic Synthesis, Vol. 7; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; pp 469À513.
(b) Booker-Milburn, K. I.; Guly, D. J.; Cox, B.; Procopiou, P. A. Org,.
Lett. 2003, 5, 3313–3315. (c) Abe, T.; Takeda, H.; Miwa, Y.; Yamada,
K.; Yamada, R.; Ishikura, M. Helv. Chim. Acta 2010, 93, 233–241.
(6) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L.; Linderman, R. J., Jr.; Lorenz, K.; Manley, J.; Pearlman,
B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411–420.
(7) (a) Zhou, L; Zhou, J.; Tan, C. K.; Chen, J.; Yeung,
Y.-Y. Org. Lett. 2011, 13, 2448–2451. (b) Zhou, L.; Tan, C. K.; Zhou,
J.; Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132, 10245–10247.
(3) (a) Isobe, T.; Fukuda, K.; Ishikawa, T. J. Org. Chem. 2000,
65, 7770–7773. (b) Isobe, T.; Fukuda, K.; Tokunaga, T.; Seki, H.;
Yamaguchi, K.; Ishikawa, T. J. Org. Chem. 2000, 65, 7774–7778.
(c) Isobe, T.; Fukuda, K.; Yamaguchi, K.; Seki, H.; Tokunaga, T.;
Ishikawa, T. J. Org. Chem. 2000, 65, 7779–7785. (d) Ishikawa, T.; Isobe,
T. Chem.;Eur. J. 2002, 8, 552–557.
r
10.1021/ol202402y
Published on Web 10/11/2011
2011 American Chemical Society