Inorganic Chemistry
Article
Kaskel, S., Ed.; John Wiley & Sons, 2016. (b) Metal−Organic
Framework Materials; MacGillivray, L. R., Lukehart, C. M., Eds.; John
Wiley & Sons: Chichester, U.K., 2014. (c) Batten, S. R.; Neville, S.
M.; Turner, D. R. Coordination Polymers: Design, Analysis and
Application; Royal Society of Chemistry, 2009; p 424 pp.
(2) (a) Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian,
J.; Zhang, M.; Zhang, Q.; Gentle, T., III; Bosch, M.; Zhou, H.-C.
Tuning the structure and function of metal−organic frameworks via
linker design. Chem. Soc. Rev. 2014, 43, 5561−5593. (b) Li, J.-R.;
Sculley, J.; Zhou, H.-C. Metal−organic frameworks for separations.
Chem. Rev. 2012, 112, 869−932. (c) Cui, Y. J.; Li, B.; He, H. J.; Zhou,
W.; Chen, B. L.; Qian, G. D. Metal−organic frameworks as platforms
for functional materials. Acc. Chem. Res. 2016, 49, 483−493.
(3) (a) Yuan, S. A.; Zou, L. F.; Li, H. X.; Chen, Y. P.; Qin, J. S.;
Zhang, Q.; Lu, W. G.; Hall, M. B.; Zhou, H. C. Flexible zirconium
metal−organic frameworks as bioinspired switchable catalysts. Angew.
Chem., Int. Ed. 2016, 55, 10776−10780. (b) DeCoste, J. B.; Peterson,
G. W. Metal−organic frameworks for air purification of toxic
chemicals. Chem. Rev. 2014, 114, 5695−5727.
W. B. Nanoscale metal−organic frameworks for therapeutic, imaging,
and sensing applications. Adv. Mater. 2018, 30, 1707634.
(10) (a) Castro, K. A. D. F.; Figueira, F.; Mendes, R. F.; Cavaleiro, J.
A. S.; Neves, M. G. P. M. S.; Simo
̃
es, M. M. Q.; Almeida Paz, F. A.;
́
Tome, J. P. C.; Nakagaki, S. Nakagaki, S. Copper−Porphyrin−Metal−
Organic Frameworks as Oxidative Heterogeneous Catalysts. Chem-
CatChem 2017, 9, 2939−2945. (b) Wu, W.; Kirillov, A. M.; Yan, X.;
Zhou, P.; Liu, W.; Tang, Y. Enhanced separation of potassium ions by
spontaneous K+-induced self-assembly of a novel metal−organic
framework and excess specific cation−pi interactions. Angew. Chem.,
Int. Ed. 2014, 53, 10649−10653.
(11) Gu, J. Z.; Wu, J.; Lv, D. Y.; Tang, Y.; Zhu, K. Y.; Wu, J. C.
Lanthanide coordination polymers based on 5-(2′-carboxylphenyl)
nicotinate: syntheses, structure diversity, dehydration/hydration,
luminescence and magnetic properties. Dalton Trans. 2013, 42,
4822−4830.
(12) (a) Manna, P.; Das, S. K. Perceptive approach in assessing
rigidity versus flexibility in the construction of diverse metal−organic
coordination networks: synthesis, structure, and magnetism. Cryst.
Growth Des. 2015, 15, 1407−1421. (b) Jaremko, Ł.; Kirillov, A. M.;
(4) Kirillov, A. M.; Kirillova, M. V.; Pombeiro, A. J. L. Multicopper
complexes and coordination polymers for mild oxidative functional-
ization of alkanes. Coord. Chem. Rev. 2012, 256, 2741−2759.
(5) (a) Loukopoulos, E.; Kallitsakis, M.; Tsoureas, N.; Abdul-Sada,
A.; Chilton, N. F.; Lykakis, I. N.; Kostakis, G. E. Cu(II) Coordination
Polymers as Vehicles in the A3 Coupling. Inorg. Chem. 2017, 56,
4898−4910. (b) Loukopoulos, E.; Kostakis, G. E. Recent advances of
one-dimensional coordination polymers as catalysts. J. Coord. Chem.
2018, 71, 371−410. (c) Kirillova, M. V.; Kirillov, A. M.; Kuznetsov,
́
Smolenski, P.; Pombeiro, A. J. L. Engineering coordination and
supramolecular copper-organic networks by aqueous medium self-
assembly with 1,3,5-triaza-7-phosphaadamantane (PTA). Cryst.
Growth Des. 2009, 9, 3006−3010.
(13) Zhang, J. Y.; Shi, J. X.; Chen, L. Y.; Jia, Q. X.; Deng, W.; Gao, E.
Q. N-donor auxiliary ligand-directed assembly of CoII compounds
with a 2,2′-dinitro-biphenyl-4,4′-dicarboxylate ligand: structures and
magnetic properties. CrystEngComm 2017, 19, 1738−1750.
(14) Xu, W.; Si, Z. X.; Xie, M.; Zhou, L. X.; Zheng, Y. Q.
Experimental and theoretical approaches to three uranyl coordination
polymers constructed by phthalic acid and N,N-Donor bridging
ligands: crystal structures, luminescence, and photocatalytic degrada-
tion of tetracycline hydrochloride. Cryst. Growth Des. 2017, 17, 2147−
2157.
́
M. L.; Silva, J. A. L.; Frausto da Silva, J. J. R.; Pombeiro, A. J. L.
Alkanes to carboxylic acids in aqueous medium: metal-free and metal-
promoted highly efficient and mild conversions. Chem. Commun.
2009, 2353−2355. (d) Bilyachenko, A. N.; Dronova, M. S.; Yalymov,
A. I.; Lamaty, F.; Bantreil, X.; Martinez, J.; Bizet, C.; Shul’pina, L. S.;
Korlyukov, A. A.; Arkhipov, D. E.; Levitsky, M. M.; Shubina, E. S.;
Kirillov, A. M.; Shul’pin, G. B. Cage-like Copper(II) Silsesquioxanes:
Transmetalation Reactions and Structural, Quantum Chemical, and
Catalytic Studies. Chem. - Eur. J. 2015, 21, 8758−8770. (e) Armakola,
E.; Colodrero, R. M. P.; Bazaga-García, M.; Salcedo, I. R.;
Choquesillo-Lazarte, D.; Cabeza, A.; Kirillova, M. V.; Kirillov, A.
M.; Demadis, K. D. Three-Component Copper-Phosphonate-
Auxiliary Ligand Systems: Proton Conductors and Efficient Catalysts
in Mild Oxidative Functionalization of Cycloalkanes. Inorg. Chem.
2018, 57, 10656−10666.
(15) Zang, S. Q.; Dong, M. M.; Fan, Y. J.; Hou, H. W.; Mak, T. C.
W. Four cobaltic coordination polymers based on 5-Iodo-isophthalic
Acid: halogen-related interaction and solvent effect. Cryst. Growth Des.
2012, 12, 1239−1246.
(16) Wan, J.; Cai, S. L.; Zhang, K.; Li, C. J.; Feng, Y.; Fan, J.; Zheng,
S. R.; Zhang, W. G. Anion- and temperature-dependent assembly,
crystal structures and luminescence properties of six new Cd(II)
coordination polymers based on 2,3,5,6-tetrakis(2-pyridyl)pyrazine.
CrystEngComm 2016, 18, 5164−5176.
(6) (a) Loukopoulos, E.; Abdul-Sada, A.; Viseux, E. M. E.; Lykakis, I.
N.; Kostakis, G. E. Structural diversity and catalytic properties in a
family of Ag (I)-benzotriazole based coordination compounds. Cryst.
Growth Des. 2018, 18, 5638−5651. (b) Yu, C. X.; Hu, F. L.; Liu, M.
Y.; Zhang, C. W.; Lv, Y. H.; Mao, S. K.; Liu, L. L. Construction of
four copper coordination polymers derived from a tetra-pyridyl-
functionalized calix[4]arene: synthesis, structural diversity and
catalytic applications in the A3 (Aldehyde, Alkyne and Amine)
coupling reaction. Cryst. Growth Des. 2017, 17, 5441−5448.
(17) Xue, Y. S.; Jin, F. Y.; Zhou, L.; Liu, M. P.; Xu, Y.; Du, H. B.;
Fang, M.; You, X. Z. Structural diversity and properties of
coordination polymers built from a rigid octadentenate carboxylic
acid. Cryst. Growth Des. 2012, 12, 6158−6164.
(18) Sahu, J.; Ahmad, M.; Bharadwaj, P. K. Structural diversity and
luminescence properties of coordination polymers built with a rigid
linear dicarboxylate and Zn(II)/Pb(II) Ion. Cryst. Growth Des. 2013,
13, 2618−2627.
(19) Wang, S. L.; Hu, F. L.; Zhou, J. Y.; Zhou, Y.; Huang, Q.; Lang,
J. P. Rigidity versus flexibility of ligands in the assembly of entangled
coordination polymers based on bi- and tetra carboxylates and N-
Donor ligands. Cryst. Growth Des. 2015, 15, 4087−4097.
(20) Zhang, J. Y.; Shi, J. X.; Cui, P. H.; Yao, Z. J.; Deng, W.
Structural diversity and catalytic properties of five Co2(COO)4
cluster-based coordination polymers modified with R-isophthalic
acid (R = H, NO2CH3OH and tBu). CrystEngComm 2017, 19, 5038−
5047.
(21) Lin, Z. J.; Han, L. W.; Wu, D. S.; Huang, Y. B.; Cao, R.
Structure versatility of coordination polymers constructed from a
semirigid tetracarboxylate ligand: syntheses, structures, and photo-
luminescent properties. Cryst. Growth Des. 2013, 13, 255−263.
(22) Gu, J. Z.; Liang, X. X.; Cai, Y.; Wu, J.; Shi, Z. F.; Kirillov, A. M.
Hydrothermal assembly, structures, topologies, luminescence, and
magnetism of a novel series of coordination polymers driven by a
trifunctional nicotinic acid building block. Dalton Trans. 2017, 46,
10908−10925.
̌
̌
(7) (a) Tabacaru, A.; Pettinari, C.; Galli, S. Coordination polymers
and metal-organic frameworks built up with poly (tetrazolate) ligands.
̌
̌
Coord. Chem. Rev. 2018, 372, 1−30. (b) Pettinari, C.; Tabacaru, A.;
Galli, S. Coordination polymers and metal−organic frameworks based
on poly (pyrazole)-containing ligands. Coord. Chem. Rev. 2016, 307,
1−31.
(8) Robin, A. Y.; Fromm, K. M. Coordination polymer networks
with O- and N-donors: What they are, why and how they are made.
Coord. Chem. Rev. 2006, 250, 2127−2157.
(9) (a) Restrepo, J.; Serroukh, Z.; Santiago-Morales, J.; Aguado, S.;
́
Gomez-Sal, P.; Mosquera, M. E. G.; Rosal, R. An Antibacterial Zn−
MOF with Hydrazinebenzoate Linkers. Eur. J. Inorg. Chem. 2017,
2017, 574−580. (b) Zheng, X. F.; Zhou, L.; Huang, Y. M.; Wang, C.
G.; Duan, J. G.; Wen, L. L.; Tian, Z. F.; Li, D. F. A series of metal-
organic frameworks based on 5-(4-pyridyl)-isophthalic acid: selective
sorption and fluorescence sensing. J. Mater. Chem. A 2014, 2, 12413−
12422. (c) Lu, K. D.; Aung, T.; Guo, N. N.; Weichselbaum, R.; Lin,
I
Inorg. Chem. XXXX, XXX, XXX−XXX