W. M. Motswainyana et al./Chemical Papers
vii
ference in conversion between the experiments with or
without mercury (Table 5, Entry 5), thereby exclud-
ing the formation of Pd(0) which could influence the
catalytic results. Structurally, the prepared complexes
could show a potential in the activation of more chal-
lenging substrates such as bromo- and chloroarenes.
Chloroarenes are the most inexpensive in the group.
Unfortunately, the high C—Cl bond strength com-
pared with C—Br and C—I bonds precludes oxidative
addition, a first step in catalytic coupling reactions.
This makes the coupling of such substrates far more
challenging. Hence, there is currently much interest in
the synthesis of catalysts that are able to activate aryl
chloride substrates at ever lower catalyst loading (Her-
rmann et al., 1995; Ahrens et al., 2006). A change in
the catalytic reaction media to non-aqueous ionic liq-
uids instead of common organic solvents is reported
to provide superior Heck vinylation of chloroarenes,
opening an avenue for further investigations of these
compounds (B¨ohm & Herrmann, 2000).
Antonaroli, S., & Crociani, B. (1998). Preparation and reac-
tions of palladium(0)-olefin complexes with iminophosphine
ligands. Journal of Organometallic Chemistry, 560, 137–146.
DOI: 10.1016/s0022-328x(98)00472-0.
Baldwin, R. A., & Washburn, R. M. (1965). Organometal-
lic azides. I. Preparation and reactions of diarylphosphinic
azides 1a. Journal of Organic Chemistry, 30, 3860–3866.
DOI: 10.1021/jo01022a063.
Beletskaya, I. P., & Cheprakov, A. V. (2000). The Heck reac-
tion as a sharpening stone of palladium catalysis. Chemical
Reviews, 100, 3009–3066. DOI: 10.1021/cr9903048.
B¨ohm, V. P. W.,
& Herrmann, W. A. (2000). Nonaque-
ous ionic liquids: Superior reaction media for the cat-
alytic Heck-vinylation of chloroarenes. Chemistry – A Eu-
ropean Journal, 6, 1017–1025. DOI: 10.1002/(sici)1521-
3765(20000317)6:6<1017::aid-chem1017>3.0.co;2-8.
Chen, C. S., & Yeh, W. Y. (2011). Synthesis of a new tetraden-
tate bis(imino-phosphine) ligand and its complexation with
copper(I) ions. Inorganica Chimica Acta, 370, 456–459. DOI:
10.1016/j.ica.2011.02.015.
Cui, Y. C., & Zhang, L. (2005). Polyvinyl chloride–polyethyl-
ene–polyamine supported palladium complexes as high ef-
ficient and recyclable catalysts for Heck reaction. Journal
of Molecular Catalysis A: Chemistry, 237, 120–125. DOI:
10.1016/j.molcata.2005.04.050.
Doherty, S., Knight, J. G., Scanlam, T. H., Elsegood, M. R.
J., & Clegg, W. (2002), Iminophosphines: synthesis, for-
mation of 2,3-dihydro-1H-benzo[1,3]azaphosphol-3-ium salts
and N-(pyridin-2-yl)-2-diphenylphosphinoylaniline, coordi-
nation chemistry and applications in platinum group cat-
alyzed Suzuki coupling reactions and hydrosilylations. Jour-
nal of Organometallic Chemistry, 650, 231–248. DOI: 10.
1016/s0022-328x(02)01203-2.
Espinet, P., & Soulantica, K. (1999). Phosphine-pyridyl and
related ligands in synthesis and catalysis. Coordination
Chemistry Reviews, 193–195, 499–556. DOI: 10.1016/s0010-
8545(99)00140-x.
Conclusions
In conclusion, imino-phosphine ligands and com-
plexes were successfully synthesised and characterised
by various spectroscopic techniques. Evaluation of the
activity of complexes I, II, and IV towards Heck cou-
pling of iodobenzene with methyl acrylate was carried
out under mild reaction conditions and low catalyst
loading. The conversion results showed the complexes
to be active, with good selectivity towards the forma-
tion of trans-methyl cinnamate. The higher activities
of the complexes suggest that the imino-phosphine lig-
ands are hemilabile.
Farrugia, L. J. (1997). ORTEP-3 for Windows – a version
of ORTEP-III with
a Graphical User Interface (GUI).
Journal of Applied Crystallography, 30, 565–566. DOI:
10.1107/s0021889897003117.
Acknowledgements. We are grateful for the financial sup-
port received from the University of the Western Cape Sen-
ate Research, Government of Botswana and National Research
Foundation (Thuthuka).
Farrugia, L. J. (1999). WinGX suite for small-molecule single-
crystal crystallography. Journal of Applied Crystallography,
32, 837–838. DOI: 10.1107/s0021889899006020.
Garralda, M. A. (2005). o-(Diphenylphosphino)benzaldehyde:
a versatile ligand and a useful hemilabile ligand precursor.
Comptes Rendus Chimie, 8, 1413–1420. DOI: 10.1016/j.crci.
2005.03.009.
Supplementary data
Grushin, V. V.,
& Alper, H. (1994). Transformations of
Crystallographic data for the structural analysis
have been deposited with the Cambridge Crystal-
lographic Data Centre, CCDC no. 874818 for com-
pound II. Copies of this information may be ob-
tained free of charge from The Director, CCDC, 12
Union Road, Cambridge, CB21EZ, UK (fax: +44-
1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www:
http://www.ccdc.cam.ac.uk).
chloroarenes, catalyzed by transition-metal complexes.
Chemical Reviews, 94, 1047–1062. DOI: 10.1021/cr00028a
008.
¨
Herrmann, W. A., Brossmer, C., Ofele, K., Reisinger, C. P.,
Priermeier, T., Beller, M., & Fischer, H. (1995). Palladacycles
as structurally defined catalysts for the heck olefination of
chloro- and bromoarenes. Angewandte Chemie International
Edition, 34, 1844–8148. DOI: 10.1002/anie.199518441.
Hoots, J. E., Rauchfuss, T. B., Wrobleski, D. A., & Knachel,
H. C. (1982). Substituted triaryl phosphines. In J. P. Fackler
(Ed.), Inorganic synthesis (Vol. 21, pp. 175–179). New York,
NY, USA: Wiley. DOI: 10.1002/9780470132524.
References
Ahrens, S., Zeller, A., Taige, M., & Strassner, T. (2006). Exten-
sion of the alkane bridge in BisNHC-palladium-chloride com-
plexes. Synthesis, structure, and catalytic activity. Organo-
metallics, 25, 5409–5415. DOI: 10.1021/om060577a.
Jeffrey, J. C., & Rauchfuss, T. B. (1979). Metal complexes of
hemilabile ligands. Reactivity and structure of dichlorobis(o-
(diphenylphosphino)anisole)ruthenium(II). Inorganic Chem-
istry, 18, 2658–2666. DOI: 10.1021/ic50200a004.
Allen, F. H. (2002). The cambridge structural database: a quar-
ter of a million crystal structures and rising. Acta Crystallo-
graphica B, 58, 380–388. DOI: 10.1107/s0108768102003890.
Marson, A., Ernsting, J. E., Lutz, M., Spek, A. L., van Leeuwen,
P. W. N. M., & Kamer, P. C. J. (2009). A novel hemilabile
calix[4], quinoline-based P ,N-ligand: coordination chemistry