Journal of the American Chemical Society
ARTICLE
octan-3-one products. Both dioxabicyclooctan-3-one ring sys-
tems are found to react readily with primary amines to form
pyrrole products. Of particular significance, lysine side chains of
hen egg white lysozyme are converted under physiologically
relevant conditions to substituted pyrroles upon exposure to
dioxabicyclic lactones 13, 14, 46, and 49. The presence of an
acetoxy substituent adjacent to the lactone carbonyl group, in
either the bridged or fused dioxabicyclooctanone series, increases
the extent of the lysine to pyrrole conversion and is essential for
induction of the macfarlandin E Golgi phenotype. These investi-
gations provide a basis for future studies aimed at identifying the
biological target(s) of these Golgi-modifying natural products, as
well as initial insight into the reactivity of the family of structurally
distinctive rearranged spongian diterpenes depicted in Figure 1.
Chavasiri, W.; Kokpol, U.; Kotze, A.; Garson, M. J. Marine Drugs 2004,
2, 101.
(5) (a) Guizzunti, G.; Brady, T. P.; Malhotra, V.; Theodorakis, E. A.
J. Am. Chem. Soc. 2006, 128, 4190. (b) Guizzunti, G.; Brady, T. P.;
Fischer, D.; Malhotra, V.; Theodorakis, E. A. Bioorg. Med. Chem. 2010,
18, 2115 and references therein.
(6) Schnermann, M. J.; Beaudry, C.; Egovora, A. V.; Polishchuk, R. S.;
S€utterlin, C.; Overman., L. E. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 6158.
(7) (a) Isolation: Dilip de Silva, E.; Morris, S. A.; Miao, S. C.;
Dumdei, E.; Andersen, R. J. J. Nat. Prod. 1991, 54, 993. (b) Total
synthesis: Lebsack, A. D.; Overman, L. E.; Valentekovich, R. J. J. Am.
Chem. Soc. 2001, 123, 4851.
(8) Hambley, T. W.; Poiner, A.; Taylor, W. C. Tetrahedron Lett.
1986, 27, 3281.
(9) Carmely, S.; Cojocaru, M.; Loya, Y.; Kashman, Y. J. Org. Chem.
1988, 53, 4801.
(10) Rudi, A.; Kashman, Y. Tetrahedron 1990, 46, 4019.
(11) This ring system is also referred to as oxytetrahydro[2,3-b]-
furan-2(3H)one.
(12) Sullivan, B.; Faulkner, D. J. J. Org. Chem. 1984, 49, 3204.
(13) Hochlowski, J. E.; Faulkner, D. J.; Matsumoto, G. K.; Clardy, J.
J. Org. Chem. 1983, 48, 1141.
(14) Bergquist, P. R.; Bowden, B. F.; Cambie, R. C.; Craw, P. A.;
Karuso, P.; Poiner, A.; Taylor, W. C. Aust. J. Chem. 1993, 46, 623.
(15) Rudi, A.; Erez, Y.; Benayahu, Y.; Kashman, Y. Tetrahedron Lett.
2005, 46, 8613.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details and co-
b
pies of 1H and 13C NMR spectra of new compounds; CIF files for
compounds 46 and 51. This material is available free of charge via
’ AUTHOR INFORMATION
Corresponding Author
(16) Select preparative approaches: (a) Corey, E. J.; Su, W. G. J. Am.
Chem. Soc. 1987, 109, 7534. (b) Petit, R.; Furstoss, R. Synthesis
1995, 1517. (c) Corey, E. J.; Letavic, M. A. J. Am. Chem. Soc. 1995,
117, 9616. (d) Weisser, R.; Yue, W.; Reiser, O. Org. Lett. 2005, 7, 5353.
(17) Brady, T. P.; Kim, S. H.; Wen, K.; Theodorakis, E. A. Angew.
Chem., Int. Ed. 2004, 43, 739.
(18) Granger, K. E. Norrisolide: Convergent Total Synthesis and
Preliminary Biological Investigation. Ph.D. Thesis, Boston College,
Boston, MA, 2009.
Present Addresses
§Department of Chemistry, 153 Gilbert Hall, Oregon State
University, Corvallis, OR 97331.
’ ACKNOWLEDGMENT
(19) (a) Arnꢀo, M.; Gonzꢀalez, M. A.; Zaragozꢀa, R. J J. Org. Chem.
2003, 68, 1242. (b) Arnꢀo, M.; Gonzꢀalez, M. A.; Marin, M. L.; Zaragozꢀa,
R. J. Tetrahedron Lett. 2001, 42, 1669.
(20) Krow, G. R. Org. React. 1993, 43, 251.
(21) Díez, E.; Dixon, D. J.; Ley, S. V. Angew. Chem., Int. Ed. 2001,
40, 2906.
We gratefully acknowledge the late Professor John Faulkner,
Scripps Institution of Oceanography, for authentic macfarlandin
E. Professor Gregory Weiss, University of California, Irvine, is
acknowledged for helpful discussions and Issa Moody, University
of California, Irvine, for initial protein-labeling studies. We thank
Dr. Joe Ziller, University of California, Irvine, for the single-
crystal X-ray analyses and Dr. John Greaves, University of
California, Irvine, for mass spectrometric analyses. This research
was supported by the NIH Neurological Disorders & Stroke
Institute (Grant NS-12389), the NIH National Institutes of
General Medical Sciences (Grant GM-098601), and NIH post-
doctoral fellowships for M.J.S. (CA-138084) and C.M.B. (GM-
079937). B.D.W.K. was supported by a postdoctoral fellowship
from the UC Irvine Training Program in Cancer Biology (NCI
Grant 5 T32 CA009054-34). NMR spectra, mass spectra, and the
X-ray analyses were obtained at UC Irvine using instrumentation
acquired with the assistance of NSF and NIH Shared Instru-
mentation grants. Unrestricted funds from Amgen and Merck are
also gratefully acknowledged.
(22) (a) For an example of a similar functionalization, see ref 7b. (b)
IBX in DMSO/toluene generated regioisomeric enone products as a 1:1
mixture. Similarly, reaction conditions such as PhSCl in MeCN or LDA,
PhSSPh in THF provided unselective introduction of the sulfur unit.
(23) Tietze, L. F.; Stadler, C.; B€ohnke, N.; Brasche, G.; Grube, A.
Synlett 2007, 485.
(24) (a) Dixon, D. J.; Ley, S. V.; Rodriguez, F. Org. Lett. 2001,
3, 3753. (b) Ley, S. V.; Dixon, D. J.; Guy, R. T.; Rodriguez, F.; Sheppard,
T. D. Org. Biomol. Chem. 2005, 3, 4095.
(25) Nakagawa, T.; Fujisawa, H.; Nagata, Y.; Mukaiyama, T. Chem.
Lett. 2004, 33, 1016.
(26) The lithium enolate (generated with LiHMDS at À78 °C in
THF) of the butane-2,3-diacetal glycolic acid derivative (the precursor
to 28) also reacted with 29 to afford 30; however, competing formation
of aldol product i (∼1:1 with 30) significantly reduced the yield of 30.
’ REFERENCES
(1) For reviews, see: (a) Keyzers, R. A.; Northcote, P. T.; Davies-
Coleman, M. T. Nat. Prod. Rep. 2006, 23, 321. (b) Gonzꢀalez, M. Curr.
Bioact. Compd. 2007, 3, 1. (c) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1.
(2) Molinski, T. F.; Faulkner, D. J.; He, C. H.; Van Duyne, G. D.;
Clardy, J. J. Org. Chem. 1986, 51, 4564.
(3) Bobzin, S. C.; Faulkner, D. J. J. Nat. Prod. 1991, 54, 225.
(4) (a) Dumdei, E. J.; Dilip de Silva, E.; Andersen, R. J.; Choudhary,
M. I.; Clardy, J. J. Am. Chem. Soc. 1989, 111, 2712. (b) Morris, S. A.; Dilip de
Silva, E.; Andersen, R. J. Can. J. Chem. 1991, 69, 768. (c) Rungprom, W.;
(27) Ley, S. V.; Humphries, A. C.; Eick, H.; Downham, R.; Ross,
A. R.; Boyce, R. J.; Pavey, J. B. J.; Pietruszka, J. J. Chem. Soc., Perkin Trans.
1 1998, 3907.
(28) (a) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6019.
(b) Corey, E. J.; Kang, M.; Desai, M. C.; Ghosh, A. K.; Houpis, J. N.
J. Am. Chem. Soc. 1988, 110, 649.
17502
dx.doi.org/10.1021/ja207727h |J. Am. Chem. Soc. 2011, 133, 17494–17503