5932
M. Radi et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5928–5933
Table 2
Acknowledgments
In vitro ADME properties of selected compounds
a
Compd PAMPA-BBB assay
Water solubility
(g/mL)
Metabolic
stability (%)
The present work was supported by the National Interest
b
c
Pe  10À6 (cm/s)
Research Projects (PRIN_2008_5HR5JK). We thank Professor
Gabriele Cruciani for assistance with Grid/Golpe calculations
(Molecular Discovery Ltd). E.C. was the recipient of an FIRC
Fellowship. M.B. whish to thank Professor Massimo Valoti and Dr.
Stefania Dragoni for the assistance on metabolic stability assays.
10a
10h
3
3.43
1.48
5.66
0.12
<0.01
0.046
99
95
91
a
Parallel Artificial Membrane Permeability Assay (PAMPA) was evaluated using
porcine polar brain lipid.
b
Effective permeability was calculated as reported in Ref. 27.
Expressed as percentage of unmodified parent drug.
Supplementary data
c
Supplementary data associated with this article can be found, in
were analyzed by means of the consensus principal component
analysis (CPCA). Figure 2E shows the pseudofield differences for
the methyl probe between Abl and c-Src. The large yellow con-
tour indicates a region where interaction between the C3-probe
and the enzyme is more favourable in c-Src than in Abl. This
area of selectivity is mainly due to the different folding of the
P-loop of Abl and c-Src. In particular, since Tyr253 partially
occupies the ribose pocket in Abl enzyme, the 6-methylthio-
pyrazolo[3,4-d]pyrimidines cannot assume in Abl the binding
mode III, otherwise the 6-methylthio would clash with it. Con-
versely, the P-loop in c-Src is totally open allowing the place-
ment of 6-substituted-pyrazolo[3,4-d]pyrimidines as described
above. As a support for these findings, the same selectivity site
has been also proposed by Wang et al. while studying the
activity profile of N9-arenethenyl purines.26
We then investigated the ability of the four most active der-
ivates (10a, 10f–h) to inhibit the proliferation of neuroblastoma
SH-SY5Y cells in comparison with the reference compound PP2.
As shown in Figure 3, although with different efficacy rate, all
the selected compounds reduced the cell growth rate in a time
and concentration-dependent manner and their antiproliferative
capacities were more marked with respect to PP2. In particular,
the strongest effect on SH-SY5Y was obtained by 10a that
References and notes
1. (a) De Bernardi, B.; Nicolas, B.; Boni, L., et al J. Clin. Oncol. 2003, 21, 1592; (b)
Matthay, K. K.; Villablanca, J. G.; Seeger, R. C., et al N. Engl. J. Med. 1999, 341, 1165.
2. Maris, J. M.; Hogarty, M. D.; Bagatell, R.; Cohn, S. L. Lancet 2007, 369, 2106.
3. Baselga, J. Science 2006, 312, 1175.
4. Boggon, T. J.; Eck, M. J. Oncogene 2004, 23, 7918.
5. Parsons, S. J.; Parsons, J. T. Oncogene 2004, 23, 7906.
6. Schenone, S.; Zanoli, S.; Brullo, C.; Crespan, E.; Maga, G. Curr. Drug Ther. 2008, 3,
158.
7. Schenone, S.; Bruno, O.; Radi, M.; Botta, M. Med. Res. Rev. 2011, 31, 1.
8. Zhang, N.; Wu, B.; Boschelli, D. H.; Golas, J. M.; Boschelli, F. Bioorg. Med. Chem.
Lett. 2009, 19, 5071.
9. Wheeler, D. L.; Iida, M.; Dunn, E. F. Oncologist 2009, 14, 667.
10. (a) Bolen, J. B.; Rosen, N.; Israel, M. A. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 7275;
(b) O’Shaughnessy, J.; Deseau, V.; Amini, S.; Rosen, N.; Bolen, J. B. Oncogene Res.
1987, 2, 1; (c) Bjelfman, C.; Hedborg, F.; Johansson, I.; Nordenskjold, M.;
Pahlman, S. Cancer Res. 1990, 50, 6908; (d) Matsunaga, T.; Takahashi, H.;
Ohnuma, N.; Tanabe, M.; Yoshida, H.; Iwai, J.; Shirasawa, H.; Simizu, B. Cancer
Res. 1991, 51, 3148; (e) Finlay, D.; Vuori, K. Cancer Res. 2007, 67, 11704.
11. (a) Matsunaga, T.; Shirasawa, H.; Tanabe, M.; Ohnuma, N.; Takahashi, H.;
Simizu, B. Cancer Res. 1993, 53, 3179; (b) Matsunaga, T.; Shirasawa, H.; Tanabe,
M.; Ohnuma, N.; Kawamura, K.; Etoh, T.; Takahashi, H.; Simizu, B. Int. J. Cancer
1994, 58, 793.
12. Hishiki, T.; Saito, T.; Sato, Y.; Mitsunaga, T.; Terui, E.; Matsuura, G.; Saito, E.;
Shibata, R.; Mise, N.; Yokoyama, Y.; Yoshida, H. Pediatr. Surg. Int. 2011, 27, 225.
13. Vitali, R.; Mancini, C.; Cesi, V.; Tanno, B.; Piscitelli, M.; Mancuso, M.; Sesti, F.; Pasquali,
E.; Calabretta, B.; Dominici, C.; Raschella, G. Int. J. Cancer 2009, 125, 2547.
14. Liu, Y.; Witucki, L. A.; Shah, K.; Bishop, A. C.; Shokat, K. M. Biochemistry 2000,
39, 14400.
showed an IC50 value at 72 h of 0.08
worthy IC50 values were observed also for 10f–h. All these IC50
were lower than that calculated for PP2 (6.10 M). The antipro-
lM. Higher but still note-
l
15. Metz, J. T.; Johnson, E. F.; Soni, N. B.; Merta, P. J.; Kifle, L.; Hajduk, P. J. Nat. Chem.
Biol. 2011, 7, 200.
liferative effect was evident from 48 h after treatment, and
immediate toxic/necrotic events were not observed. Moreover
the proliferation assay of non transformed human diploid fibro-
blasts Hs27, according to the same treatment protocol, demon-
strated that compounds 10a, 10f–h had a comparable or even
better safe profile with respect to PP2. A significant retardation
in proliferative rate of Hs27 was observed only from about
16. (a) Radi, M.; Dreassi, E.; Brullo, C.; Crespan, E.; Tintori, C.; Bernardo, V.; Valoti,
M.; Zamperini, C.; Daigl, H.; Musumeci, F.; Carraro, F.; Naldini, A.; Filippi, I.;
Maga, G.; Schenone, S.; Botta, M. J. Med. Chem. 2011, 54, 2610; (b) Radi, M.;
Crespan, E.; Falchi, F.; Bernardo, V.; Zanoli, S.; Manetti, F.; Schenone, S.; Maga,
G.; Botta, M. Chemmedchem 2010, 5, 1226; (c) Radi, M.; Crespan, E.; Botta, G.;
Falchi, F.; Maga, G.; Manetti, F.; Corradi, V.; Mancini, M.; Santucci, M. A.;
Schenone, S.; Botta, M. Bioorg. Med. Chem. Lett. 2008, 18, 1207; (d) Santucci, M.
A.; Corradi, V.; Mancini, M.; Manetti, F.; Radi, M.; Schenone, S.; Botta, M.
Chemmedchem 2009, 4, 118.
10
lM of tested compounds.
17. Manetti, F.; Santucci, A.; Locatelli, G. A.; Maga, G.; Spreafico, A.; Serchi, T.;
Orlandini, M.; Bernardini, G.; Caradonna, N. P.; Spallarossa, A.; Brullo, C.;
Schenon, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Hoffmann, O.; Bologna, M.;
Angelucci, A.; Botta, M. J. Med. Chem. 2007, 50, 5579.
18. Morisi, R.; Celano, M.; Tosi, E.; Schenone, S.; Navarra, M.; Ferretti, E.; Costante,
G.; Durante, C.; Botta, G.; D’Agostino, M.; Brullo, C.; Filetti, S.; Botta, M.; Russo,
D. J. Endocrinol. Invest. 2007, 30, RC31.
19. Spreafico, A.; Schenone, S.; Serchi, T.; Orlandini, M.; Angelucci, A.; Magrini, D.;
Bernardini, G.; Collodel, G.; Di Stefano, A.; Tintori, C.; Bologna, M.; Manetti, F.;
Botta, M.; Santucci, A. FASEB J. 2008, 22, 1560.
20. Kruewel, T.; Schenone, S.; Radi, M.; Maga, G.; Rohrbeck, A.; Botta, M.; Borlak, J.
PLoS One 2010, 30, e14143.
Finally, in vitro ADME properties (effective permeability in BBB
model, water solubility, microsomal stability) for compounds 10a
and 10h were also evaluated in comparison with the progenitor
derivative 3 (Table 2; see Supplementary data for details). Com-
pound 10a was characterized by the best metabolic stability and
water solubility while showing a BBB-permeation comparable to
that of 3. These results could account for the better activity showed
by 10a in cell assays.
In summary, the present work reports the identification of
potent c-Src inhibitors able to inhibit the growth of SH-SY5Y
NB cell lines. While the dual Src/Abl inhibitors 1–3 have previ-
ously shown to reduce NB cell growth, adhesion and invasive-
21. Navarra, M.; Celano, M.; Mariuolo, J.; Schenone, S.; Botta, M.; Angelucci, A.;
Bramanti, P.; Russo, D. B. M. C. Cancer 2010, 10, 602.
22. (a) Antonelli, A.; Bocci, G.; La Motta, C.; Ferrari, S. M.; Fallahi, P.; Fioravanti, A.;
Sartini, S.; Minuto, M.; Piaggi, S.; Corti, A.; Alì, G.; Berti, P.; Fontanini, G.; Danesi,
R.; Da Settimo, F.; Miccoli, P. J. Clin. Endocrinol. Metab. 2011, 96, E288–96; (b)
Bocci, G.; Fioravanti, A.; La Motta, C.; Orlandi, P.; Canu, B.; Di Desidero, T.;
Mugnaini, L.; Sartini, S.; Cosconati, S.; Frati, R.; Antonelli, A.; Berti, P.; Miccoli,
P.; Da Settimo, F.; Danesi, R. Biochem. Pharmacol. 2011, 81, 1309.
23. Anderson, F. E.; Kaminsky, D.; Dubnick, B.; Klutchko, S. R.; Cetenko, W. A.;
Gylys, J.; Hart, J. A. J. Med. Chem. 1962, 5, 221.
24. (a) Beierle, E. A.; Ma, X.; Trujillo, A.; Kurenova, E. V.; Cance, W. G.;
Golubovskaya, V. M. Mol. Carcinog. 2010, 49, 224; (b) Beierle, E. A.; Ma, X.;
Stewart, J.; Nyberg, C.; Trujillo, A.; Cance, W. G.; Golubovskaya, V. M. Cell Cycle
2010, 9, 1005.
ness at 10 lM, compounds 10a, 10f–h herein identified showed
an improved antiproliferative activity in SH-SY5Y treated cells
with 10a showing a very interesting IC50 of 80 nM after 72 h.
These results can be considered as an advanced starting point
to investigate the structure–activity relationship of these new
pyrazolo[3,4-d]pyrimidines in order to develop new selective c-
Src inhibitors as potential drugs for the treatment of
neuroblastoma.