5612
G. Maiti et al. / Tetrahedron Letters 52 (2011) 5610–5612
References and notesx
FeCl2OH
N
O
FeCl2
1. (a) Atmani, D.; Chaher, N.; Berboucha, M.; Debbache, N.; Boudaoud, H. Curr.
Nutr. Food Sci. 2009, 5, 225–237; (b) Dixon, R. A.; Steele, C. Plant Sci. 1999, 4,
394–400.
2. Liu, H. L.; Jiang, W. B.; Xie, M. X. Recent Pat. Anti-Cancer Drug Discovery 2010, 5,
152–164.
3. Carneiro, C. D.; Amorim, J. C.; Cadena, S. M. S. C.; Noleto, et al Food Chem.
Toxicol. 2010, 48, 2380–2387.
4. Theoharides, T. C. In Chemistry and Molecular Aspects of Drug Design; Rekka, E.
A., Kourounakis, P. N., Eds.; CRC Press: Boca Raton, FL, 2008; pp 215–226.
5. Meragelman, K. M.; McKee, T. C.; Boyd, M. R. J. Nat. Prod. 2001, 64, 546–548.
6. Ferguson, L. R. Mutat. Res. 2001, 475, 89–111.
7. (a) Alvim, J., Jr.; Severino, R. P.; Marques, E. F.; Martinelli, A. M.; Vieira, P. C.;
Fernandes, J. B.; da Silva, M. F.; Das, G. F.; Correˆa, A. G. J. Comb. Chem. 2010, 12,
687–695; (b) Yao, N.; Song, A.; Wang, X.; Dixon, S.; Lam, K. S. J. Comb. Chem.
2007, 9, 668–676; (c) Sarda, S. R.; Jadhav, W. N.; Pawar, R. P. Int. J. ChemTech Res.
2009, 1, 539–543; (d) Zhao, J.; Zhao, Y.; Fu, H. Angew. Chem., Int. Ed. 2011, 50,
3769–3773; (e) Yang, Q.; Alper, H. J. Org. Chem. 2010, 75, 948–950.
8. (a) Minassi, A.; Giana, A.; Ech-Chahad, A.; Appendino, G. Org. Lett. 2008, 10,
2267–2270; (b) Zembower, D. E.; Zhang, H. J. Org. Chem. 1998, 63, 9300–9305;
(c) Furuta, T.; Nakayama, M.; Suzuki, H.; Tajimi, H.; Inai, M.; Nukaya, H.;
Wakimoto, T.; Kan, T. Org. Lett. 2009, 11, 2233–2236.
ArC CH
H
OH
OH
N
N
H
O
Ar
O
Ar
FeCl2OH
O2
H2O
O
O
H
O
O
FeCl2
Ar
FeCl3
FeCl2
Ar
Figure 2. Probable mechanism.
9. (a) Baker, W. J. Chem. Soc. 1933, 1381–1389; (b) Mahal, H. S.; Venkataraman, K.
Curr. Sci. 1933, 2, 214.
reaction condition. This may be explained by the low nucleophilicity
of the alkyne due to the conjugation with the aromatic ring contain-
ing a strong electron withdrawing functional group.
10. (a) Riva, C.; DeToma, C.; Donadd, L.; Boi, C.; Pennini, R.; Motta, G.; Leonardi, A.
Synthesis 1997, 195; (b) Ganguly, A. K.; Kaur, S.; Mahata, P. K.; Biswas, D.;
Pramanik, B. N.; Chan, T. Tetrahedron Lett. 2005, 46, 4119; (c) Ganguly, A. K.;
Mahata, P. K.; Biswas, D. Tetrahedron Lett. 2006, 47, 1347; (d) Bois, F.; Beney, C.;
Mairotte, A. M.; Boumendjel, A. Synlett 1999, 1480.
11. Chee, C. F.; Buckle, M. J.; Rahman, N. A. Tetrahedron Lett. 2011, 52, 3120–3123.
12. Ciattini, P. G.; Morera, E.; Ortar, G.; Rossi, S. S. Tetrahedron 1991, 47, 6449.
13. (a) Shulpin, G. B.; Kats, M. M. React. Kinet. Catal. Lett. 1990, 41, 239–243; (b)
Walters, M. A.; Chaparro, J.; Siddiqui, T.; Williams, F.; Ulku, C.; Rheingold, A. L.
Inorg. Chem. Acta 2006, 359, 3996–4000.
14. Haas, R. H.; Shirley, D. A. J. Org. Chem. 1965, 30, 4111–4113.
15. For selected examples, see: (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed.
2001, 40, 3726–3748; (b) List, B. Tetrahedron 2002, 58, 5573–5590; (c)
Duthaler, R. O. Angew. Chem., Int. Ed. 2003, 42, 975–978; (d) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138–5175; (e) Ma, J.; Cahard, D.
Angew. Chem., Int. Ed. 2004, 43, 4566–4583; (f) Gröger, H. Chem. Eur. J. 2001, 7,
5246–5251; (g) Ding, Q.; Wu, J. Org. Lett. 2007, 9, 4959–4962.
16. (a) MacMillan, D. W. C. Nature 2008, 455, 304–308; (b) Ahrendt, K. A.; Borths, C.
J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243–4244; (c) Reisman, S.
E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198–7199.
17. (a) Marko, I.-E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996,
274, 2044–2046; (b) Uozumi, Y.; Nakao, R. Angew. Chem., Int. Ed. 2003, 42, 194–
197; (c) Velusamy, S.; Punniyamurthy, T. Org. Lett. 2004, 6, 217–219.
18. Skouta, R.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 1117–1119.
19. Li, H.; Liu, J.; Yan, B.; Li, Y. Tetrahedron Lett. 2009, 50, 2353–2357.
20. Romanelli, G. P.; Virla, E. G.; Duchowicz, P. R.; Gaddi, A. L.; Ruiz, D. M.;
Bennardi, D. O.; Ortiz, E. D. V.; Autino, J. C. J. Agric. Food Chem. 2010, 58, 6290–
6295.
It is very interesting to note that how the variation of catalyst sol-
vent system can lead to different products, the major reactants
remaining similar. Skouta et al.18 showed that the reaction between
salicylaldehyde and phenyl acetylene in the presence of a tributyl-
phosphine and AuCN as the catalyst in toluene at 150 °C afforded iso-
flavone. On the other hand, phenyl acetylene, salicylaldehyde, and
piperidine in the presence of copper(I) halides as catalyst in DMF,
potassium carbonate, and nBu4NBr yielded benzofurans in modest
yield. In the absence of potassium carbonate and nBu4NBr under sim-
ilar reaction condition afforded the propoargyl amine derivatives.19
The compounds 3b and 3f have recently been reported to show
good activity against Spodoptera frugiperda, the fall armyworm
which is regarded as a pest and can wreak havoc with crops if left
to multiply. The 50% lethal times (LT50) of 3b and 3f were shown to
be 53 and 44 h, respectively.20
In conclusion, we have developed a new methodology toward
one pot synthesis of flavones under dual catalysis of piperidine,
an organocatalyst and ferric chloride, a Lewis acid. The notable
advantages of this method are operational simplicity, use of inex-
pensive and eco-friendly FeCl3 as catalyst, employment of atmo-
spheric oxygen as the stoichiometric oxidant and ease of isolation
of products. Further studies in this area to explore the synthetic
applications of the reaction are progress.
21. Representative experimental procedure for the synthesis 2-phenyl-4H-chromen-4-
one (3a): A mixture of 2-hydroxybenzaldehyde (122 mg, 1.0 mmol), phenyl
acetylene (153 mg, 1.5 mmol), anhydrous ferric chloride (16 mg, 0.10 mmol)
and piperidine (17 mg, 0.20 mmol) were added to dry toluene (3 mL) taken in a
25 mL round bottom flask fitted with a reflux condenser and a calcium chloride
guard tube and was refluxed for 6–12 h. Completion of the reaction was
monitored by TLC. The reaction mixture was decomposed with water and
extracted with diethyl ether (3 Â 15 mL), washed with water followed by brine
solution and dried over anhydrous Na2SO4. Filtered and volatiles were removed
in vacuo and the crude residue was purified by column chromatography over
silica gel (100–200 mesh), eluting with 8–15% ethyl acetate in petroleum ether
to afford 3a (178 mg, 80%) as a white solid and 1-(2-hydroxyphenyl)-3-phenyl-
propenone 4a (9 mg, 4%). Spectral and analytical data of 3a: mp 97–98 °C. IR
Acknowledgments
We thank the Department of Chemistry, Jadavpur University for
the financial and infrastructural support from UGC-CAS and
PURSE-DST Programme. R.K. and U.K. thank CSIR, New Delhi for
awarding the fellowships. We are also thankful to Mr. S. Dutta,
IICB, Kolkata for providing instrumental facilities.
(KBr): 1128, 1225, 1375, 1448, 1465, 1495, 1568, 1645, 2355, 2923, 3088 cmÀ1
.
1H NMR (CDCl3, 300 MHz): d 6.84 (s, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.50–7.61 (m,
4H), 7.71 (t, J = 7.5 Hz, 1H), 7.90–7.96 (m, 2H), 8.24 (d, J = 7.5 Hz, 1H). 13C NMR
(CDCl3, 75 MHz): d 107.6, 118.1, 124.0, 125.3, 125.8, 126.4, 129.1, 131.6, 131.8,
133.8, 156.3, 163.5, 178.1. HRMS for [C15H11O2]+ calcd 223.0754; found
223.0748. Spectral and analytical data of 4a: mp 79–80 °C. IR (KBr): 975, 1020,
Supplementary data
1029, 1152, 1235, 1340, 1438, 1448, 1574, 1639 cmÀ1 1H NMR (CDCl3,
.
300 MHz): d 6.95 (t, J = 8.0 Hz, 1H), 7.63–7.67 (m, 3H), 7.89–7.94 (m, 2H), 12.85
(brs, 1H). 13C NMR (CDCl3, 75 MHz): d 118.6, 118.8, 120.0, 120.1, 128.6, 129.0,
129.6, 130.9, 134.6, 136.4, 145.4, 163.6, 193.7.
Supplementary data (1H, 13C NMR spectral data of compound
3b–m) associated with this article can be found, in the online ver-