5704
D. S. Raghuvanshi, K. N. Singh / Tetrahedron Letters 52 (2011) 5702–5705
90
1.35
1.20
1.05
0.90
0.75
0.60
0.45
0.30
0.15
0.00
4a
4g
4k
80
70
60
50
40
30
20
10
0
4a
4g
4k
4m
4m
450
500
550
600
650
300
350
400
450
500
Wavelength, nm
Wavelength, nm
Figure 1. Absorption and emission spectra of 4a, 4g, 4k and 4m derivatives.
1.6
1.2
0.8
0.4
0.0
125
4n
4t
4n
4t
4x
4z
4x
4z
100
75
50
25
0
400 425 450 475 500 525 550 575 600 625
300
325
350
375
400
425
450
Wavelength, nm
Wavelength, nm
Figure 2. Absorption and emission spectra of 4n, 4t, 4x and 4z derivatives.
E = Eabs À Eflu (in cmÀ1
)
4. (a) Caddick, S.; Fitzmaurice, R. Tetrahedron 2009, 65, 3325–3355; (b) Dallinger,
D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563–2591; (c) Loupy, A. Microwaves in
Organic Synthesis, 2nd ed.; Wiley-VCH: Weinheim, 2006; (d) Kappe, C. O.
Angew. Chem., Int. Ed. 2004, 43, 6250–6284.
5. (a) Shore, G.; Morin, S.; Organ, M. G. Angew. Chem., Int. Ed. 2006, 45, 2761–
2766; (b) Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal
Chemistry; Wiley-VCH: Weinheim, 2005. p 182; (c) Comer, E.; Organ, M. G. A.
J. Am. Chem. Soc. 2005, 127, 8160–8167.
6. Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363–2389.
7. Bao, W.; Wang, Z. Green Chem. 2006, 8, 1028–1033.
8. Zhao, D.; Wu, M.; Kou, Y.; Min, E. Catal. Today 2002, 74, 157–189.
9. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667–3691.
10. Qiao, K.; Yakoyama, C. Chem. Lett. 2004, 33, 472–473.
11. Sun, W.; Xia, C.-G.; Wang, H.-W. Tetrahedron Lett. 2003, 44, 2409–2411.
12. (a) Kamal, A.; Chouhan, G. Tetrahedron Lett. 2005, 46, 1489–1491; (b) Earle, M.
J.; Katdare, S. P.; Seddon, K. R. Org. Lett. 2004, 6, 707–710.
13. Franklin, E. C. Chem. Rev. 1935, 16, 305–361.
14. Bergstrom, F. W. Chem. Rev. 1944, 35, 77–277.
15. Lichtenthaler, F. W. Acc. Chem. Res. 2002, 35, 728–737.
16. Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Bioorg. Med. Chem. Lett. 1996, 6,
1819–1824.
have been determined as the difference
D
and have been found to range from 4946.73 to 10857.29 cmÀ1 for
the cyano derivatives 4a, 4g, 4k, and 4m, and from 7341.44 to
12990.24 cmÀ1 for the ester derivatives 4n, 4t, 4y, and 4z. Thus,
the Stokes shifts for the cyano compounds are lower as compared
to that of the ester derivatives. This may be explained as a conse-
quence of involvement of amino group in hydrogen bonding with
the O-atom of the ester group, which is absent in the case of first
series of compounds.
In conclusion, a one-pot high yielding synthetic protocol has
been developed for achieving 1H-pyrazolo[1,2-b]phthalazine-
5,10-diones using an environmentally benign and recyclable cata-
lyst [Bmim]OH. The observed fluorescent behavior of these deriva-
tives further opens its amenability as a new series of fluorescent
molecules.
17. Elguero, J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C.
W., Scriven, E. F., Eds.; Elsevier: Oxford., 1996; Vol. 3, pp 1–75.
18. Singh, S. K.; Reddy, P. G.; Rao, K. S.; Lohray, B. B.; Misra, P.; Rajjak, S. A.; Rao, Y.
K.; Venkatewarlu, A. Bioorg. Med. Chem. Lett. 2004, 14, 499–504.
19. (a) Genin, M. J.; Biles, C.; Keiser, B. J.; Poppe, S. M.; Swaney, S. M.; Tarpley, W.
G.; Yagi, Y.; Romero, D. L. J. Med. Chem. 2000, 43, 1034–1040; (b) O’Hagan, D. J.
Fluorine Chem. 2010, 131, 1071–1081.
Acknowledgments
The authors are thankful to the Department of Biotechnology,
New Delhi for the research project and to the CSIR, New Delhi for
SRF to DSR. Thanks are also due to Professor S. B. Rai, Department
of Physics, BHU, Varanasi for measuring the fluorescence lifetimes.
20. Al-Assar, F.; Zelenin, K. N.; Lesiovskaya, E. E.; Bezhan, I. P.; Chakchir, B. A.
Pharm. Chem. J. 2002, 36, 598–603.
21. Jain, R. P.; Vederas, J. C. Bioorg. Med. Chem. Lett. 2004, 14, 3655–3658.
22. Carling, R. W.; Moore, K. W.; Street, L. J.; Wild, D.; Isted, C.; Leeson, P. D.;
Thomas, S.; O’Conner, D.; McKernan, R. M.; Quirk, K.; Cook, S. M.; Atack, J. R.;
Waftord, K. A.; Thompson, S. A.; Dawson, G. R.; Ferris, P.; Castro, J. L. J. Med.
Chem. 2004, 47, 1807–1822.
23. Grasso, S.; DeSarro, G.; Micale, N.; Zappala, M.; Puia, G.; Baraldi, M.; Demicheli,
C. J. Med. Chem. 2000, 43, 2851–2859.
24. Nomoto, Y.; Obase, H.; Takai, H.; Teranishi, M.; Nakamura, J.; Kubo, K. Chem.
Pharm. Bull. 1990, 38, 2179–2183.
References and notes
1. (a) Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46–58; (b)
Spring, D. R. Org. Biomol. Chem. 2003, 1, 3867–3870; (c) Strausberg, R. L.;
Schreiber, S. L. Science 2003, 300, 294–295.
2. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893–930.
3. (a) Marcaccini, S.; Torroba, T. In Multicomponent Reactions; Zhu, J., Bienayme, H.,
Eds.; Wiley-VCH: Wienheim, 2005; pp 33–75; (b) Domling, A. Chem. Rev. 2006,
106, 17–89.