the structure stabilising effect of the PBI–PBI interaction that
leads to robust 1D aggregates at the TCB/HOPG interface.
In conclusion, an oxidative coupling route towards thiophene
macrocycles was applied to prepare a shape-persistent electron
rich thiophene macrocycle with extraannularly attached electron
poor PBI moieties. We have shown that the organisation in
one dimension is dominated by the strong attractive forces
between the PBI units. The results prove the concept of
interaction of PBI substituents applied for supramolecular
structure formation of macrocycles.
Fig. 3 (a) Cyclic voltammogram of 5 in CH2Cl2 at a concentration of
4 Â 10À4 M and a sweep rate of 100 mV sÀ1; (b) HOMO/LUMO
potentials of 5 compared to the HOMO/LUMO energies of the PBI
dye 11 shown in (c).
We gratefully acknowledge the DFG (SFB 813 and SFB
624) for financial support.
Notes and references
We were able to gain additional structural information of 10
by directly visualising molecular patterns formed by the
macrocycles at the interface of 1,2,4-trichlorobenzene (TCB)
and highly oriented pyrolytic graphite (HOPG) using scanning
tunneling microscopy (STM; see Fig. 4). Stacking between
PBI substituents of adjacent molecules leads to the formation
of (brightly appearing)21 chain-like supramolecular one-
dimensional (1D) assemblies with a variable line distance of
w1D Z 5.5 nm (cf. Fig. 4b).22 The latter are separated by
(darker appearing) intermediate regions covered by the flexible,
branched 2-octyldodecyloxy substituents that tend to assemble
along the HOPG main axes.23 From the large distance we
assume that all alkoxy substituents are adsorbed and do not
interdigitate, which frustrates the interaction of molecules of
adjacent lines, so that only 1D order is observed. However,
some of the lines form a most dense, two-dimensional (2D)
crystalline packing (Fig. 4a, dashed box, and Fig. 4b) with
observed line distances of w2D = 3.5 Æ 0.3 nm, which are
consistent with an incomplete adsorption of the branched
alkoxy sidechains. It is of interest to note that both packing
motifs exist under the imaging conditions used here, indicating
1 (a) G.-B. Pan, X.-H. Cheng, S. Hoger and W. Freyland, J. Am.
¨
Chem. Soc., 2006, 128, 4218; (b) E. Mena-Osteritz and P. Bauerle,
¨
Adv. Mater., 2006, 18, 447; (c) T. Chen, G.-B. Pan, H. Wettach,
M. Fritzsche, S. Hoger, L.-J. Wan, H.-B. Yang, B. H. Northrop
¨
and P. J. Stang, J. Am. Chem. Soc., 2010, 132, 1328.
2 M. Fritzsche, A. Bohle, D. Dudenko, U. Baumeister,
D. Sebastiani, G. Richardt, H. W. Spiess, M. R. Hansen and
S. Hoger, Angew. Chem., Int. Ed., 2011, 50, 3030.
¨
uerle,
J. Lumin., 2004, 110, 225; (b) F. Zhang, G. Gotz, E. Mena-Osteritz,
¨
3 (a) M. Bednarz, P. Reineker, E. Mena-Osteritz and P. Ba
¨
M. Weil, B. Sarkar, W. Kaim and P. Bauerle, Chem. Sci., 2011, 2, 781.
¨
´
chet, Angew. Chem., Int. Ed.,
4 B. C. Thompson and J. M. J. Fre
2008, 47, 58.
5 (a) A. Cravino and N. S. Sariciftci, J. Mater. Chem., 2002, 12, 1931;
(b) J. Roncali, Chem. Soc. Rev., 2005, 34, 483; (c) G. Bottari, G. de
la Torre, D. M. Guldi and T. Torres, Chem. Rev., 2010, 110, 6768.
6 T. Weil, T. Vosch, J. Hofkens, K. Peneva and K. Mullen, Angew.
Chem., Int. Ed., 2010, 49, 9068.
7 F. Wurthner, Chem. Commun., 2004, 1564.
¨
8 L. Zang, Y. Che and J. S. Moore, Acc. Chem. Res., 2008, 41, 1596.
9 (a) Y. Ie, T. Uto, N. Yamamoto and Y. Aso, Chem. Commun.,
2009, 1213; (b) N. Tchebotareva, X. Yin, M. D. Watson,
P. Samorı, J. P. Rabe and K. Mullen, J. Am. Chem. Soc., 2003,
125, 9734; (c) S. Campidelli, R. Deschenaux, J.-F. Eckert,
D. Guillon and J.-F. Nierengarten, Chem. Commun., 2002, 656.
¨
¨
10 F. Zhang, G. Gotz, H. D. F. Winkler, C. A. Schalley and
¨
¨
P. Bauerle, Angew. Chem., Int. Ed., 2009, 48, 6632.
11 D. Zhao and J. S. Moore, Chem. Commun., 2003, 807.
12 J. D. Tovar, A. Rose and T. M. Swager, J. Am. Chem. Soc., 2002,
124, 7762.
13 P. Knops and F. Vogtle, Chem. Ber., 1991, 124, 1223.
¨
14 W. Kern, M. Seibel and H. O. Wirth, Makromol. Chem., 1959, 29, 164.
15 M. G. Organ, G. A. Chass, D.-C. Fang, A. C. Hopkinson and
C. Valente, Synthesis, 2008, 17, 2776.
16 M. Leclerc, F. M. Diaz and G. Wegner, Makromol. Chem., 1989,
123, 5651.
17 S. Hoger, A.-D. Meckenstock and S. Muller, Chem.–Eur. J., 1998,
¨
4, 2423.
¨
18 H. Kaiser, J. Lindner and H. Langhals, Chem. Ber., 1991, 124, 529.
19 S. Hoger, K. Bonrad, A. Mourran, U. Beginn and M. Moller,
¨
J. Am. Chem. Soc., 2001, 34, 31.
¨
Fig. 4 (a) STM image of 10 at the TCB/HOPG interface. The self-
assembly into chains is ascribed to the intermolecular stacking of the
extraannular PBI units (bright spots) and consistent with the molecular
structure of 10 (VS = À0.7 V, It = 30 pA). The molecular models in (b)
represent the 1D and 2D ordered adsorbate patterns, as observed in (a).
The red lines indicate the unit cell, a = 3.8 Æ 0.3 nm, b = 3.2 Æ 0.3 nm,
and g = 66 Æ 31.
20 J. L. Segura, N. Martin and D. M. Guldi, Chem. Soc. Rev., 2005,
34, 31.
´
21 R. Lazzaroni, A. Calderone, J. L. Bredas and J. P. Rabe, J. Chem.
Phys., 1997, 107, 99.
22 F. Wurthner, Z. Chen, V. Dehm and V. Stepanenko, Chem.
¨
Commun., 2006, 1188.
23 T. Yang, S. Berber, J.-F. Liu, G. P. Miller and D. Toma
J. Chem. Phys., 2008, 128, 124709.
´
nek,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11023–11025 11025