Full Paper
[5] E. J. Dix, M. S. Herman, J. L. Goodman, J. Am. Chem. Soc. 1993, 115,
10424–10425.
The results of our tunneling calculations are in reasonable
agreement with our experimental results. Our calculations pre-
dict that tunneling dominates the reaction rates at tempera-
tures below 50 K. Our CASPT2/cc-PVDZ calculations reproduce
very closely the experimental rate of reaction of 1 in argon.
Unfortunately, the calculated CASPT2/cc-PVDZ KIE for the re-
arrangement of 1-d4 is about forty times larger than the exper-
imental value measured in argon. However, the experimental
value may contain large errors because of the extremely slow
rate of rearrangement of 1-d4, and only a lower limit for the
experimental value of kH/kD can actually be estimated. There-
fore, the apparently sizable discrepancy between the experi-
mental and calculated KIEs may reflect errors in both sets of
values.
[6] P. Zuev, R. S. Sheridan, J. Am. Chem. Soc. 1994, 116, 4123–4124.
[7] P. S. Zuev, R. S. Sheridan, J. Am. Chem. Soc. 2001, 123, 12434–12435.
[8] T. V. Albu, B. J. Lynch, D. G. Truhlar, A. C. Goren, D. A. Hrovat, W. T.
Borden, R. A. Moss, J. Phys. Chem. A 2002, 106, 5323–5338.
[9] H. Tomioka, Springer Ser. At. Plasmas 2004, 36, 147–172.
[10] D. Ley, D. Gerbig, J. P. Wagner, H. P. Reisenauer, P. R. Schreiner, J. Am.
Chem. Soc. 2011, 133, 13614–13621.
[11] S. Wierlacher, W. Sander, M. T. H. Liu, J. Am. Chem. Soc. 1993, 115, 8943–
8953.
[12] S. Henkel, Y. A. Huynh, P. Neuhaus, M. Winkler, W. Sander, J. Am. Chem.
Soc. 2012, 134, 13204–13207.
[13] P. R. Schreiner, H. P. Reisenauer, D. Ley, D. Gerbig, C.-H. Wu, W. D. Allen,
Science 2011, 332, 1300–1303.
[14] P. R. Schreiner, H. P. Reisenauer, F. C. I. V. Pickard, A. C. Simmonett, W. D.
Allen, E. Matyus, A. G. Csaszar, Nature 2008, 453, 906–909.
[15] J. Pranata, D. A. Dougherty, J. Phys. Org. Chem. 1989, 2, 161–176.
[16] M. B. Sponsler, R. Jain, F. D. Coms, D. A. Dougherty, J. Am. Chem. Soc.
1989, 111, 2240–2252.
[17] P. S. Zuev, R. S. Sheridan, T. V. Albu, D. G. Truhlar, D. A. Hrovat, W. T.
Borden, Science 2003, 299, 867–870.
[18] R. A. Moss, R. R. Sauers, R. S. Sheridan, J. Tian, P. S. Zuev, J. Am. Chem.
Soc. 2004, 126, 10196–10197.
Experimental Section
Materials
4-Diazo-2,5-cyclohexadien-1-one 3 and (d4)-4-diazo-2,5-cyclohexa-
dien-1-one (3-d4) were synthesized according to literature proce-
dures.
[19] A. Datta, D. A. Hrovat, W. T. Borden, J. Am. Chem. Soc. 2008, 130, 6684–
6685.
[20] O. M. Gonzalez-James, X. Zhang, A. Datta, D. A. Hrovat, W. T. Borden,
D. A. Singleton, J. Am. Chem. Soc. 2010, 132, 12548–12549.
[21] P. Carsky, J. Michl, Theor. Chim. Acta 1992, 84, 125–133.
[22] H. Inui, K. Sawada, S. Oishi, K. Ushida, R. J. McMahon, J. Am. Chem. Soc.
2013, 135, 10246–10249.
[23] B. K. Carpenter, J. Am. Chem. Soc. 1983, 105, 1700–1701.
[24] B. R. Arnold, J. G. Radziszewski, A. Campion, S. S. Perry, J. Michl, J. Am.
Chem. Soc. 1991, 113, 692–694.
[25] G. Maier, R. Wolf, H. O. Kalinowski, Angew. Chem. 1992, 104, 764–766.
[26] G. L. Snyder, D. A. Dougherty, J. Am. Chem. Soc. 1989, 111, 3942–3954.
[27] W. Sander, G. Bucher, F. Reichel, D. Cremer, J. Am. Chem. Soc. 1991, 113,
5311–5322.
4-Diazo-2,5-cyclohexadien-1-one 3
IR (Ar, 3 K): n˜ =1636 (vs), 1630 (vs), 1456 (w), 1407 (w), 1241 (s)
1146 (s) 1084 (vw), 845 (m), 792 (w), 775 (w), 718 cmꢀ1 (m).
(d4)-4-Diazo-2,5-cyclohexadien-1-one (3-d4)
IR (Ar, 3 K): n˜ =1620 (vs), 1562 (s), 1416 (w), 1305 (s), 1237 (w) 1191
(vw) 1140 (m), 830 (m), 814 (m), 745 (m), 658cmꢀ1 (m).[6,8]
[28] D. C. Merrer, R. A. Moss, M. T. H. Liu, J. T. Banks, K. U. Ingold, J. Org.
Chem. 1998, 63, 3010–3016.
Matrix isolation
[29] E. Kraka, D. Cremer, J. Phys. Org. Chem. 2002, 15, 431–447.
[30] E. M. Greer, C. V. Cosgriff, C. Doubleday, J. Am. Chem. Soc. 2013, 135,
10194–10197.
[31] M. Pettersson, E. M. S. Macoas, L. Khriachtchev, J. Lundell, R. Fausto, M.
Rasanen, J. Chem. Phys. 2002, 117, 9095–9098.
Matrix isolation experiments were performed by using a closed-
cycle helium compressor (CSW-71, Sumitomo Heavy Industries Ltd)
to cool a CsI spectroscopic window to 3 K. FTIR spectra were re-
corded on a Bruker Vertex 70v spectrometer with a resolution of
0.5 cmꢀ1 by using a DLaTGs detector in the range 400–4000 cmꢀ1
For details see Supporting Information.
.
[32] J. Sabelko, J. Ervin, M. Gruebele, Proc. Natl. Acad. Sci. USA 1999, 96,
6031–6036.
[33] P. L. Biancaniello, A. J. Kim, J. C. Crocker, Biophys. J. 2008, 94, 891–896.
[34] G. Bazsꢃ, S. Gobi, G. Tarczay, J. Phys. Chem. A 2012, 116, 4823–4832.
[35] I. Reva, M. J. Nowak, L. Lapinski, R. Fausto, J. Chem. Phys. 2012, 136,
064511/064511–064511/064518.
Acknowledgements
[36] S. Lopes, A. V. Domanskaya, R. Fausto, M. Raesaenen, L. Khriachtchev, J.
Chem. Phys. 2010, 133, 144507/144501–144507/144507.
[37] A. Sole, S. Olivella, J. M. Bofill, J. M. Anglada, J. Phys. Chem. 1995, 99,
5934–5944.
[38] W. Sander, R. Hubert, E. Kraka, J. Grafenstein, D. Cremer, Chem-Eur J
2000, 6, 4567–4579.
The research in Germany was supported by the Cluster of Ex-
cellence RESOLV (EXC 1069) funded by the Deutsche For-
schungsgemeinschaft. The research in the U.S. was supported
by Grant CHE-0910527 from the National Science Foundation
and Grant B0027 from the Robert A. Welch Foundation.
[39] B. Chen, A. Y. Rogachev, D. A. Hrovat, R. Hoffmann, W. T. Borden, J. Am.
Chem. Soc. 2013, 135, 13954–13964.
[40] K. Andersson, P. A. Malmqvist, B. O. Roos, J. Chem. Phys. 1992, 96, 1218–
1226.
Keywords: calculations
rearrangement · tunneling
·
carbene
·
matrix isolation
·
[41] D. G. Truhlar, B. C. Garrett, Annu. Rev. Phys. Chem. 1984, 35, 159–189.
[42] A. E. Fernandez-Ramos, B. C. Garrett, D. G. Truhlar, in Reviews in Compu-
tational Chemistry, John Wiley & Sons, Inc., 2007, pp. 125–232.
[43] S. Kozuch, X. Zhang, D. A. Hrovat, W. T. Borden, J. Am. Chem. Soc., 2013,
135, 17274–17277.
[1] K. U. Ingold in Hydrogen-Transfer Reactions, (Eds: J. T. Hynes, J. P. Klin-
man, H.-H. Limbach, R. L. Schowen), Wiley-VCH, Weinheim, 2007,
pp. 875–893, Chapter 28.
[2] H.-H. Limbach, K. B. Schowen, R. L. Schowen, J. Phys. Org. Chem. 2010,
23, 586–605.
[44] Y. Y. Chuang, J. C. Corchado, D. G. Truhlar, J. Phys. Chem. A 1999, 103,
1140–1149.
[3] O. L. Chapman, J. W. Johnson, R. J. McMahon, P. R. West, J. Am. Chem.
Soc. 1988, 110, 501–509.
[4] M. S. Platz, Acc. Chem. Res. 1988, 21, 236–242.
[45] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007–1023.
[46] R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, J. Chem. Phys. 1992, 96,
6796–6806.
Chem. Eur. J. 2014, 20, 1 – 9
7
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
&
&
These are not the final page numbers! ÞÞ