Journal of the American Chemical Society
COMMUNICATION
Scheme 2. Synthesis of (Z)-Alkene 5
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedure and
b
spectral data for all new compounds. This material is available
’ AUTHOR INFORMATION
Corresponding Author
Scheme 3. Synthesis of (E)-Alkene 8
’ ACKNOWLEDGMENT
This work was supported by a Grant-in-Aid for Scientific
Research from MEXT, Japan.
’ REFERENCES
(1) Reviews:(a) Mukaiyama, T. Org. React. 1982, 28, 203. (b)
Comprehensive Organic Syntheses; Trost, B. M., Fleming, I., Heathcock,
C. H., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, pp 99À319. (c)
Gr€oger, H.; Vogl, E. M.; Shibasaki, M. Chem.—Eur. J. 1999, 4, 1137. (d)
Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim,
2004; Vols. 1 and 2.
(2) Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.;
Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066.
(3) Kato, J.; Mukaiyama, T. Chem. Lett. 1983, 1727.
(4) (a) Mahrwald, R.; Costisella, B.; G€undogan, B. Tetrahedron Lett.
1997, 38, 4543. (b) Mahrwald, R.; Costisella, B.; G€undogan, B. Synthesis
1998, 262. (c) Mahrwald, R.; G€undogan, B. Chem. Commun. 1998, 2273.
(5) (a) Maeda, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1998,
63, 4558. (b) Uehira, S.; Han, Z.; Shinokubo, H.; Oshima, K. Org. Lett.
1999, 1, 1383.
(6) (a) Yachi, K.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 1999,
121, 9465. (b) Han, Z.; Yorimitsu, H.; Shinokubo, H.; Oshima, K.
Tetrahedron Lett. 2000, 41, 4415.
(7) Kawano, Y.; Fujisawa, H.; Mukaiyama, T. Chem. Lett. 2005, 614.
(8) Yasuda, M.; Tanaka, S.; Baba, A. Org. Lett. 2005, 7, 1845.
(9) Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48.
(10) (a) Denmark, S. E.; Ghosh, S. K. Angew. Chem., Int. Ed. 2001,
40, 4759. (b) Denmark, S. E.; Bui, T. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 5439. (c) Denmark, S. E.; Bui, T. J. Org. Chem. 2005, 70, 10190. (d)
Denmark, S. E.; Bui, T. J. Org. Chem. 2005, 70, 10393.
reaction was realized with excellent chemoselectivity as well as
stereoselectivities.
With the optimal reaction conditions, the diastereo- and
enantioselective direct cross-aldol reaction of several other donor
aldehydes with acceptor aldehydes was examined, and the results
are summarized in Table 3. All reactions proceeded to give either
anti- or syn-cross-aldol products with excellent enantioselectivity,
respectively.
The absolute configuration of the product obtained by
L-proline was determined to be (2R,3S) by comparison of the
optical rotation with the literature data.18 On the other hand, the
reaction catalyzed by (S)-2 gave the syn-diol having (2S,3S)
configuration. On the basis of the observed stereochemistry,
transition state models can be proposed as shown in Figure 1.
In the case of the proline-catalyzed reaction, the Re face of the
α-chloroaldehyde approaches the Re-face of the dominant
s-trans-enamine (Figure 1, TS1). While both s-trans-enamine and
s-cis-enamine might be formed in the reaction catalyzed by (S)-2,
only s-cis-enamine can react with the activated α-chloroaldehyde,
giving the (2S,3S)-isomer predominantly (Figure 1, TS2).14a,b
The obtained aldol adduct 3 was a versatile intermediate in
organic synthesis and readily converted to important chiral
building blocks (Scheme 2). Thus, diacetate 4, which was
prepared from the cross-aldol adduct anti-3, could be converted
to the corresponding (Z)-alkene 5 by the photoinduced metala-
tion with samarium diiodide and the subsequent β-elimination of
O-acetyl chlorohydrin.19 The resulting (Z)-alkene 5 was hydro-
genated to 6 without loss of optical purity. Interestingly, the
β-elimination of cyclic carbonate 7 under identical conditions
was found to provide (E)-alkene 8 as a major stereoisomer
(Scheme 3). These transformations represent the formal asym-
metric alkenylation and alkylation of aldehydes.
(11) Matsubara, R.; Kawai, N.; Kobayashi, S. Angew. Chem., Int. Ed.
2006, 45, 3814.
(12) Seifert, A.; Scheffler, U.; Markert, M.; Mahrwald, R. Org. Lett.
2010, 12, 1660.
(13) Representative anti-selective cross-aldol reaction of aldehydes:
(a) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002,
124, 6798. (b) Chowdari, N. S.; Ramachary, D. B.; Cꢀordova, A.; Barbas,
C. F., III. Tetrahedron Lett. 2002, 43, 9591. (c) Mase, N.; Tanaka, F.;
Barbas, C. F., III. Angew. Chem., Int. Ed. 2004, 43, 2420. (d) Storer, R. I.;
MacMillan, D. W. C. Tetrahedron 2004, 60, 7705. (e) Cꢀordova, A.
Tetrahedron Lett. 2004, 45, 3949. (f) Northrup, A. B.; Mangion, I. K.;
Hettche, F.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2004, 43, 2152.
(g) Mangion, I. K.; Northrup, A. B.; MacMillan, D. W. C. Angew. Chem.,
Int. Ed. 2004, 43, 6722. (h) Thayumanavan, R.; Tanaka, F.; Barbas, C. F.,
III. Org. Lett. 2004, 6, 3541. (i) Casas, J.; Engqvist, M.; Ibrahem, I.;
Kaynak, B.; Cꢀordova, A. Angew. Chem., Int. Ed. 2005, 44, 1343. (j) Wang,
W.; Li, H.; Wang, J. Tetrahedron Lett. 2005, 46, 5077. (k) Zhang, F.; Su,
N.; Gong, Y. Synlett 2006, 1703. (l) Hayashi, Y.; Aratake, S.; Okano, T.;
Takahashi, J.; Sumiya, T.; Shoji, M. Angew. Chem., Int. Ed. 2006,
45, 5527. (m) Hayashi, Y.; Aratake, S.; Itoh, T.; Okano, T.; Sumiya,
T.; Shoji, M. Chem. Commun. 2007, 957. (n) Xiong, Y.; Wang, F.; Dong,
S.; Liu, X.; Feng, X. Synlett 2008, 73. (o) Hayashi, Y.; Itoh, T.; Aratake,
S.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 2082. (p) Hajra, S.; Giri,
A. K. J. Org. Chem. 2008, 73, 3935. (q) Urushima, T.; Yasui, Y.; Ishikawa,
In summary, we have developed a highly chemo- and stereo-
selective asymmetric direct cross-aldol reaction between aliphatic
aldehydes and α-chloroaldehydes catalyzed by proline and the
novel axially chiral amino sulfonamide (S)-2. This organocataly-
tic process represents a rare example of cross-aldol reaction
between two different aliphatic aldehydes. Further application of
the present cross-aldol reaction as well as chiral amino sulfon-
amide catalyst (S)-2, particularly for the development of new
enantioselective reactions, is under investigation.
18132
dx.doi.org/10.1021/ja208873k |J. Am. Chem. Soc. 2011, 133, 18130–18133