€ €
€
6288
R. Csutortoki et al. / Tetrahedron 68 (2012) 6284e6288
using a GCeMS TRACE DSQ II mass spectrometer (Thermo Fisher
Scientific Dreieich, Germany), with an electron energy of 70 eV and
a source temperature of 180 ꢀC, using a direct insertion probe with
a direct desorption probe filament in positive ion mode. The HRMS
EI spectra were recorded at 70 eV and 20 eV, using a GC/MS in-
strument with a time-of-flight mass analyser (Micromass, Waters,
Manchester, UK) in positive ion mode. Below 20 eV, the production
of ions was not sufficient. The elemental compositions of the ions
were determined by accurate mass measurements with standard
deviation <5 ppm. Perfluorokerosene was used as reference com-
pound and the mass resolution was 5000.
(td, 1H, J¼7.5, 1.1 Hz, 14-H), 6.51 (dd, 1H, J¼8.0, 1.1 Hz, 12-H), 6.59 (d,
1H, J¼7.7 Hz,15-H), 6.97 (t,1H, J¼7.6 Hz,13-H), 7.04 (d,1H, J¼8.9 Hz,
6-H), 7.36 (ddd, 1H, J¼8.1, 6.9, 1.1 Hz, 3-H), 7.49 (ddd, 1H, J¼8.4, 6.9,
1.4 Hz, 2-H), 7.73 (d, 1H, J¼8.9 Hz, 5-H), 7.80 (d, 1H, J¼8.3 Hz, 1-H),
7.81 (d,1H, J¼8.1 Hz, 4-H).13C NMR (150 MHz, CD2Cl2):
¼16.8 (C-9),
d
30.7 (C-10), 31.6 (C-8), 55.2 (C-15b), 67.3 (C-10a), 81.5 (C-7a), 113.6
(C-12),114.9 (C-15c),117.2 (C-14),118.7 (C-6),119.6 (C-15a),123.0 (C-
1), 123.4 (C-3), 127.0 (C-2), 128.3 (C-13), 128.7 (C-4), 128.8 (C-4a),
129.2 (C-15), 129.3 (C-5), 132.9 (C-15d), 142.1 (C-11a), 150.3 (C-6a).
HR-EI-MS formula and RA (%): [M]þ. (100) m/z calcd for
C22H20N2O: 328.1570, found 328.1579; [MꢁOH]þ (70) m/z calcd for
C22H19N2: 311.1543, found 311.1539; [MꢁCHO]þ (8) m/z calcd for
C21H19N2: 299.1543, found 299.1540; [MꢁC2H3O]þ (4) m/z calcd for
C20H17N2: 285.1392, found 285.1392; [MꢁC4H7]þ (20) m/z calcd for
C18H13N2O: 273.1022, found 273.1026; [MꢁC5H8N]þ 246(14) m/z
calcd for C17H12NO: 246.0913, found 246.0922; [MꢁC5H9N2]þ (20)
m/z calcd for C17H11O: 231.0804; found 231.0807; [MꢁH]þ 327(20),
C16H11Nþꢂ: 217(10), C16H1þ0ꢂ: 202(7), C15Hþ9 : 189(5).
The ESI spectra were recorded with a UHR-Q-TOF maXis (Bruker
Daltonik GmbH, Bremen, Germany) mass spectrometer in positive
electrospray mode. All samples were injected (3
mL/min) with
a Harvard syringe pump. The capillary voltage was set to 4.0 kV.
The desolvation temperature was 180 ꢀC. The desolvation gases
were delivered at 4.0 L/min. For MS/MS after selection of the ap-
propriate precursor ion, nitrogen was used as collision gas and the
gas cell was maintained between 5 and 65 eV.
Starting trifunctional aminonaphthols were synthetized
Acknowledgements
according to literature methods: 34 and 6.5
The authors thank the Hungarian Research Foundation (OTKA
No. K-75433) and TAMOP-4.2.1/B-09/KONV-2010-0005 and the
4.2. Synthesis of 4
ꢀ
Deutsche Akademische Austauschdienst (DAAD), project-ID
50368559, for financial support. I.S. acknowledges the award of
Et3N (0.15 mL, 1.1 mmol) and aqueous glutardialdehyde solution
(25%, 0.42 mL, 1.1 mmol) were added to a solution of 3 (379 mg,
1 mmol) in EtOH (15 mL). The mixture was stirred for 1 day at room
temperature, during which white crystals separated out. The
crystalline product (4) was filtered off, washed with cold EtOH
(2ꢃ5 mL) and recrystallized from iPr2O (10 mL).
ꢀ
a Bolyai Janos Fellowship.
References and notes
1. Arrayas, R. G.; Carratero, J. C. Chem. Soc. Rev. 2009, 38, 1940e1948.
2. Martin, S. F. Pure Appl. Chem. 2009, 81, 195e204.
White crystals, 267 mg (81%), mp: 207e209 ꢀC. 1H NMR
ꢀ
€ €
3. Szatmari, I.; Fulop, F. Curr. Org. Synth. 2004, 1, 155e165.
(600 MHz, CD2Cl2):
d
¼1.73e1.81 (m, 2H, 9-Heq, 8-Hax), 1.92e2.02
ꢀ
€ €
4. Heydenreich, M.; Koch, A.; Klod, S.; Szatmari, I.; Fulop, F.; Kleinpeter, E. Tetra-
hedron 2006, 62, 11081e11089.
5. Csutortoki, R.; Szatmari, I.; Koch, A.; Heydenreich, M.; Kleinpeter, E.; Fulop, F.
Tetrahedron 2011, 67, 8564e8571.
(m, 2H, 10-Hax, 9-Hax), 2.08e2.12 (m, 1H, 10-Heq), 2.17e2.22 (m, 1H,
8-Heq), 4.91 (dd, 1H, J¼9.4, 5.4 Hz, 7a-H), 5.64e5.66 (m, 1H, 10a-H),
5.88 (s, 1H, 15b-H), 6.62 (td, 1H, J¼7.5, 1.1 Hz, 14-H), 6.78e6.82 (m,
2H, 15-H, 12-H), 7.05 (d, 1H, J¼8.9 Hz, 6-H), 7.11 (t, 1H, J¼7.7 Hz, 13-
H), 7.39 (td, 1H, J¼7.6, 0.9 Hz, 3-H), 7.52 (td, 1H, J¼7.4, 1.4 Hz, 2-H),
7.74 (d, 1H, J¼8.9 Hz, 5-H), 7.81e7.85 (t, 2H, J¼8.1 Hz, 4-H, 1-H). 13C
€ €
€
ꢀ
€ €
6. Kuznetsov, V. F. U.S. Patent 7,855,296, 2010.
7. Lopez, S.; Fernandez-Trillo, F.; Midon, P.; Castedo, L.; Saa, C. J. Org. Chem. 2005,
70, 6346e6352.
ꢀ
ꢀ
ꢀ
ꢀ
8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Car-
icato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg,
J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Naka-
jima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, T. A.; Peralta, J. E.,
Jr.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S.
S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels,
A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
Revision A.02; Gaussian,: Wallingford CT, 2009.
NMR (150 MHz, CD2Cl2):
d
¼16.9 (C-9), 30.4 (C-10), 31.2 (C-8), 53.8
(C-15b), 81.1 (C-7a), 87.3 (C-10a), 114.1 (C-15c), 116.4 (C-12), 118.8
(C-6), 120.3 (C-14), 122.0 (C-15a), 123.1 (C-1), 123.8 (C-3), 127.3 (C-
2), 128.9 (C-4), 129.0 (C-4a), 129.1 (C-13, C-15), 129.8 (C-5), 132.9 (C-
15d), 150.4 (C-6a), 153.1 (C-11a).
HR-EI-MS formula and RA (%): [M]þ. (100) m/z calcd for
C22H20NO2: 329.1410, found 329.1427; [MꢁOH]þ (92) m/z calcd for
C22H18NO: 312.1388; found 312.1377; [MꢁCHO]þ (5) m/z calcd for
C21H18NO: 300.1383, found 300.1378; [MꢁC2H3O]þ (6) m/z calcd
for C20H16NO: 286.1232, found 286.1238; [MꢁC5H8N]þ 247(20); m/
z calcd for C17H11O2: 247.0754, found 247.0758; [MꢁC5H8NO]þ
(100) m/z calcd for C17H11O: 231.0804, found 231.0807; [MꢁH]þ
328(25), C16H10Oþꢂ: 218(10), C16H1þ0ꢂ: 202(10), C15Hþ9 : 189(24).
9. (a) Hehre, W. J.; Radom, L.; v. Rague Schleyer, P.; Pople, J. Ab Initio Molecular
Orbital Theory; Wiley: New York, NY, 1986; (b) Becke, A. D. J. Chem. Phys. 1993,
98, 1372e1377.
10. SYBYL 7.3; Tripos: 1699 South Hanley Road, St. Louis, MO 63144, USA, 2007.
11. PERCH Solutions Ltd. Kuopio, Finland Laatikainen, R. J. Magn. Reson. 1991, 92,
1e9; Laatikainen, R. QCMP100. MLDC8 QCPE Bull. 1992, 12, 23; Laatikainen, R.;
€ €
Niemitz, M.; Weber, U.; Sundelin, J.; Hassinen, T.; Vepsalainen, J. J. Magn. Reson.
4.3. Synthesis of 7
1996, A120, 1e10; Laatikainen, R.; Niemitz, M.; Malaisse, W. J.; Biesemans, M.;
Willem, R. Magn. Reson. Med. 1996, 36, 359e365.
12. Pihlaja, K.; Liukko-Sipi, S.; Fulop, F.; Bernath, G.; Vainiotalo, P. Rapid Commun.
€ €
ꢀ
To a solution of 6 (264 mg, 1 mmol) in EtOH (15 mL), aqueous
glutardialdehyde solution (25%, 0.42 mL, 1.1 mmol) was added and
the mixture was stirred at room temperature. After 3 h, when TLC
indicated no presence of the starting materials, the reaction mix-
ture was concentrated under reduced pressure. The product was
then isolated by column chromatography (eluent: n-hexane/EtOAc
2:1 v/v) and was crystallized from n-hexane.
Mass Spectrom. 1991, 5, 230e233.
13. Martiskainen, O.; Fulop, F.; Szatmari, I.; Pihlaja, F. Arkivoc 2009, iii, 115e129.
€ €
ꢀ
ꢀ ꢀ
€ €
ꢀ
14. Joutsiniemi, K.; Vainiotalo, P.; Pihlaja, K.; Lazar, L.; Fulop, F.; Bernath, G. Rapid
Commun. Mass Spectrom. 1995, 9, 1035e1037.
ꢀ ꢀ
€ €
ꢀ
15. Joutsiniemi, K.; Vainiotalo, P.; Lazar, L.; Fulop, F.; Bernath, G. Rapid Commun.
Mass Spectrom. 1995, 9, 998e1002.
€ €
ꢀ
ꢀ
16. Vainiotalo, P.; Fulop, F.; Stajer, G.; Bernath, G.; Pihlaja, K. Acta Chem. Scand. 1990,
44, 165e169.
ꢀ
ꢀ
€ €
17. Juhasz, M.; Zalan, Z.; Fulop, F.; Pihlaja, K. Rapid Commun. Mass Spectrom. 2006,
20, 3595e3604.
Beige crystals,141 mg (43%), mp: 197e199 ꢀC.1H NMR (600 MHz,
18. (a) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209e220; (b) Stewart, J. J. P. J.
Comput. Chem. 1989, 10, 221e264.
19. Becke, A. D. J. Chem. Phys. 1993, 98, 5648e5652.
20. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785e789.
21. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999e3093.
CD2Cl2):
d
¼1.69e1.71 (m, 1H, 9-Heq), 1.72e1.74 (m, 1H, 8-Hax),
1.74e1.79 (m,1H,10-Hax),1.94e1.98 (m,1H, 9-Hax),1.99e2.04 (m,1H,
10-Heq), 2.14e2.19 (m, 1H, 8-Heq), 3.99 (br s, 1H, NH), 4.85 (dd, 1H,
J¼9.4, 4.1Hz, 7a-H), 5.17e5.19 (m,1H,10a-H), 5.78(s,1H,15b-H), 6.37