LETTER
Acid-Promoted Aza-Cyclization versus p-Cyclization of N-Acyliminium Species
1825
1992, 57, 1568. (b) Yamagishi, M.; Yamada, Y.; Ozaki, K.;
Asao, M.; Shimizu, R.; Suzuki, M.; Matsumoto, M.;
Matsuoka, Y.; Matsumoto, K. J. Med. Chem. 1992, 35, 2085.
(12) Lee, S.-C.; Park, S. B. J. Comb. Chem. 2007, 9, 828.
(13) (a) Surygina, O.; Ehwald, M.; Liebscher, J. Tetrahedron
Lett. 2000, 41, 5479. (b) Sieck, O.; Schaller, S.; Grimme, S.;
Liebscher, J. Synlett 2003, 337.
(14) (a) Le Quement, S. T.; Nielsen, T. E.; Meldal, M. J. Comb.
Chem. 2007, 9, 1060. (b) Min, B. J.; Gu, X.; Yamamoto, T.;
Petrov, R. R.; Qu, H.; Lee, Y. S.; Hruby, V. J. Tetrahedron
Lett. 2008, 49, 2316; and references cited therein.
(15) (a) Sannigrahi, M.; Pinto, P.; Chan, T. M.; Shih, N.-Y.;
Njoroge, F. G. Tetrahedron Lett. 2006, 47, 4877.
formation in TS1 compared with TS2 would lead to cis-
15a as the major product (Scheme 6).29
In conclusion, we have developed a short and effective
synthesis of enantiopure fused pyrroloimidazolones 3 and
pyrroloisoquinolinones 4 based on kinetic vs. thermody-
namic control of an intramolecular electrophilic cycliza-
tion when both nitrogen and p-aromatic nucleophiles are
present in an N-acyliminium precursor. The reaction pro-
ceeds with good to very high yields and moderate diaste-
reoselectivity. Moreover, with two p-aromatic nucleo-
philes, the N-acyliminium cyclization onto chiral substi-
tuted isoindoloisoquinolinones 15 related to 4 occurs with
acceptable yields and low stereochemical distribution.
Only a six-membered-ring pathway as opposed to an
eight-membered occurred during these transformations.
In this case the diastereomeric ratio could be interestingly
modified (up to 2.5:1 ª 71.5:28.5 in non-optimized con-
ditions) by varying the reaction temperature without
changing other parameters.
(b) Cayley, A. N.; Gallagher, K. A.; Ménard-Moyon, C.;
Schmidt, J. P.; Diorazio, L. J.; Taylor, R. J. K. Synthesis
2008, 3846.
(16) Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P. Eur.
J. Org. Chem. 2005, 3437; and references cited therein.
(17) Lewanowicz, A.; Lipinski, J.; Siedlecka, R.; Skarzewski, J.;
Baert, F. Tetrahedron 1998, 54, 6571.
(18) Martinez, E. J.; Corey, E. J. Org. Lett. 2000, 2, 993.
(19) Pin, F.; Comesse, S.; Garrigues, B.; Marchalín, Š.; Daïch, A.
J. Org. Chem. 2007, 72, 1181.
(20) The ratio of both diastereomers 3a,b considered as kinetic
products was estimated by 1H NMR spectroscopy and is
different from that of their amidal congeners 9 in a 7:1 ratio.
(21) Data for Compound 3b
These simple modular approaches are currently under in-
vestigation in our group to access various scaffolds anal-
ogous to natural products.
Isolated in 51% yield as a white solid (EtOAc–cyclohexane
= 1:4); mp 136 °C; [a]D –20.9 (c 0.81×10–3, CH2Cl2).
IR (KBr): nmax = 3019, 1687 cm–1. 1H NMR (300 MHz,
CDCl3): d = 1.01 (s, 9 H), 3.33 (dd, 1 H, J = 12.0, 8.0 Hz),
4.64 (dd, 1 H, J = 12.3, 7.6 Hz), 4.80 (t, 1 H, J = 7.8 Hz),
7.25–7.38 (m, 5 HAr), 7.51 (t, 1 HAr, J = 7.2 Hz), 7.58 (t,
1 HAr, J = 7.2 Hz), 7.80 (d, 1 HAr, J = 7.2 Hz), 8.16 (d, 1 HAr,
J = 7.2 Hz). 13C NMR (75 MHz, CDCl3): d = 28.1, 51.7,
64.7, 75.9, 81.0, 122.8, 125.4, 126.8, 127.7, 128.9, 131.8,
132.7, 144.3, 153.6, 179.9. MS (EI): m/z = 350 [M+]. Anal.
Calcd (%) for C21H22N2O3 (350.16): C, 71.98; H, 6.33; N,
7.99. Found: C, 71.77; H, 6.18; N, 7.76.
Acknowledgment
We are grateful to Le Havre University for material support (J.F.F.)
and to Dawn Hallidy for proofreading the text.
References and Notes
(1) For important reviews in this area, see: (a) Speckamp, W.
N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817.
(b) Maryanoff, B. E.; Zhang, H. C.; Cohen, J. H.; Turchi,
I. J.; Maryanoff, C. A. Chem. Rev. 2004, 104, 1431.
(2) For aza-cyclization, see: (a) Fogain-Ninkam, A.; Daïch, A.;
Netchitaïlo, P.; Decroix, B. Eur. J. Org. Chem. 2003, 427.
(b) Oukli, N.; Comesse, S.; Chafi, N.; Oulyadi, H.; Daïch, A.
Tetrahedron Lett. 2009, 50, 1459.
(22) Sikoraiova, J.; Daïch, A.; Marchalín, Š.; Decroix, B.
Tetrahedron Lett. 2002, 43, 4747.
(23) (a) Polniaszek, R. P.; Belmont, S. E. J. Org. Chem. 1991, 56,
4868. (b) Chihab-Eddine, A.; Daïch, A.; Jilale, A.; Decroix,
B. Tetrahedron Lett. 2001, 42, 573.
(24) (a) Meyers, A. I.; Burgess, L. E. J. Org. Chem. 1991, 56,
2294. (b) Burgess, L. E.; Meyers, A. I. J. Org. Chem. 1992,
57, 1656; and references cited therein.
(25) (a) Allin, S. M.; Duffy, L. J.; Page, P. C. B.; McKee, V.;
Edgar, M.; McKenzie, M. J.; Amat, M.; Bassas, O.; Santos,
M. M. M.; Bosch, J. Tetrahedron Lett. 2006, 47, 5713.
(b) Amat, M.; Bassas, O.; Llor, N.; Canto, M.; Perez, M.;
Molins, E.; Bosch, J. Chem. Eur. J. 2006, 12, 7872.
(26) (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976,
734. (b) Baldwin, J. Tetrahedron 1982, 38, 2939.
(3) Cul, A.; Daïch, A.; Decroix, B.; Sanz, G.; Van Hijfte, L.
Tetrahedron 2004, 60, 11029.
(4) For oxa-cyclization, see: (a) Mamouni, A.; Daïch, A.;
Marchalín, Š.; Decroix, B. Heterocycles 2001, 54, 275.
(b) Sikoraiova, J.; Chihab-Eddine, A.; Marchalín, Š.; Daïch,
A. J. Heterocycl. Chem. 2002, 39, 383. (c) Pesquet, A.;
Van Hijfte, L.; Daïch, A. ARKIVOC 2010, (viii), 27.
(5) See, for example: Allin, S. M.; Gaskell, S. N.; Elsegood,
M. R. J.; Martin, W. P. J. Org. Chem. 2008, 73, 6448.
(6) (a) Aeberli, P.; Houlihan, W. J. J. Org. Chem. 1968, 33,
2402. (b) Massa, S.; De Martino, G. Farmaco 1978, 33, 271.
(7) (a) Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron
1978, 34, 2399. (b) Marino, J. P.; Bogdan, S.; Kimura, K.
J. Am. Chem. Soc. 1992, 114, 5566. (c) El Azab, A. S.;
Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 2757.
(8) Lee, Y. S.; Kim, S. H.; Jung, S. H.; Lee, S. J.; Park, H.
Heterocycles 1994, 37, 303.
(27) Data for Compound 15a
Isolated in 35% yield as an orange solid (EtOAc–
cyclohexane = 2:3; Rf = 0.17); mp 171 °C; [a]D –212.4 (c
1.45×10–3, CH2Cl2). IR (KBr): nmax = 3019, 1686 cm–1. 1H
NMR (300 MHz, CDCl3): d = 2.02–20.7 (m, 1 H), 2.35–2.56
(m, 3 H), 3.91–4.03 (m, 1 H), 4.30 (s, 2 H), 4.81 (s, 1 H), 5.59
(s, 1 H), 7.12–7.24 (m, 5 HAr), 7.30–7.33 (m, 4 HAr), 7.44–
7.48 (t, 1 HAr, J = 6.6 Hz), 7.56 (d, 1 HAr, J = 6.0 Hz), 7.67
(d, 1 HAr, J = 7.2 Hz), 7.75 (d, 1 HAr, J = 7.2 Hz). 13C NMR
(75 MHz, CDCl3): d = 29.8, 31.5, 39.3, 51.6, 59.1, 66.6,
123.7, 124.2, 126.0, 126.4, 127.3 (2×), 127.6, 127.8, 128.8,
129.2, 129.6 (2×), 132.0, 132.5, 134.4, 135.0, 140.9, 145.0,
167.5, 175.7. MS (EI): m/z = 394 [M+]. Anal. Calcd (%) for
(9) (a) Barbosa, Y. A. O.; Hart, D. J.; Magomedov, N. A.
Tetrahedron 2006, 62, 8748. (b) Dransfield, P. J.; Dilley,
A. S.; Wang, S.; Romo, D. Tetrahedron 2006, 62, 5223.
(10) Iwamoto, O.; Koshino, H.; Hashizume, D.; Nagasawa, K.
Angew. Chem. Int. Ed. 2007, 46, 8625.
(11) (a) Yamagishi, M.; Yamada, Y.; Ozaki, K.; Date, T.;
Okamura, K.; Suzuki, M.; Matsumoto, K. J. Org. Chem.
Synlett 2011, No. 13, 1821–1826 © Thieme Stuttgart · New York