1226
V.N. Boiko et al. / Journal of Fluorine Chemistry 132 (2011) 1219–1226
(e) S.S. Gitis, A.Ya. Kaminskii, Usp. Khim. (Russ. Chem. Rev.), 47 (1978) 1970–
2013 (in Russian);
Chem. Abstr. 90 (1979) 71249g;
4.2.13.3. 4-(N,N-Dimethylamino)pyridinium 2,4,6-tris(fluorosulfo-
nyl)phenolate (15). 4-(N,N-Dimethylamino)pyridine (DMAP) was
used. M.p. 179.8–181.5 8C. 1H NMR ([D6]acetone):
d = 3.36 (s, 6H,
(f) T.N. Hall, Ch.F. Poranski, in: H. Feuer (Ed.), The Chemistry of Nitro and Nitroso
Groups, Pt. 2, Interscience, New York, 1970, pp. 329–384.
[3] (a) V.P. Parini, Usp. Khim. (Russ. Chem. Rev.), 31 (1962) 822–837 (in Russian);
Chem. Abstr. 58 (1963) 2330e;
2
NMe2), 7.14 (d, JH,H = 7.4 Hz, 2H, 3,5-ArH (Py)), 8.30 (d,
2JH,H = 7.4 Hz, 2H, 2,6-ArH (Py)), 8.39 (s, 2H, ArH) ppm. 19F NMR
([D6]acetone):
d
= 54.8 (s, 2F, o-SO2F), 67.7 (s, 1F, p-SO2F) ppm. 13
C
(b) D.V. Bunthorpe, Chem. Rev. 70 (1970) 295–322.
2
[4] (a) V.N. Boiko, L.M. Yagupolskii, Izv. Sibir. Otdel. Akad. Nauk USSR, Ser. Khim.
Nauk (Siberian J. Chem. USSR), 4 (1983) 50–58 (in Russian);
V.N. Boiko, Chem. Abstr. 99 (1983) 174914k;
NMR ([D6]acetone):
d
= 39.5 (s, 2C, NMe2), 106.9 (d, JC,F = 27 Hz,
1C, 4-C), 107.2 (s, 2C, 3-C, 5-C (Py)), 124.6 (d, 2JC,F = 21 Hz, 2C, 2-C,
6-C), 138.9 (s, 2C, 3-C, 5-C), 139.1 (s, 2C, 2-C, 6-C (Py)), 167.4 (s, 1C,
1-C) ppm. C13H13F3N2O7S3 (462.44); calcd. C 33.77, H 2.83, N 6.06,
S 20.80; found C 33.66, H 2.79, N 6.15, S 20.75.
(b) V.N. Boiko, Izv. Sibir. Otdel. Akad. Nauk USSR, Ser. Khim. Nauk (Siberian J.
Chem. USSR), 4 (1990) 126–136 (in Russian);
V.N. Boiko, Chem. Abstr. 114 (1991) 184522y.
[5] J.M. Carpentier, F. Terrier, R. Schall, N.V. Ignatev, V.N. Boiko, L.M. Yagupolskii, Bull.
Soc. Chim. Fr. (1985) 150–154.
[6] A.Yu. Nazarenko, V.N. Boiko, I.V. Gogoman, G.M. Shchupak, Zh. Obshch. Khim. (J.
Gen. Chem. USSR), 58 (1988) 1389–1394 (in Russian);
Chem. Abstr. 110 (1989) 192152k.
[7] A.J. Gordon, R.A. Ford, The Chemist’s Companion, John Wiley & Sons, New York,
1972.
[8] H.-S. Lee, L. Geng, T. Scotheim, WO 96/29753 (1996).
[9] V.N. Boiko, G.M. Shchupak, N.V. Ignatev, L.M. Yagupolskii, Zh. Organ. Khim. (J. Org.
Chem. USSR), 15 (1979) 1245–1253 (in Russian);
4.2.14. Tetraalkylammonium 2,4,6-tris(fluorosulfonyl)phenolates
(16–18). General procedure
To a stirred solution of 2,4,6-tris(fluorosulfonyl)phenol (5, 2.0 g,
5.88 mmol) in H2O (120 mL) a solution of a corresponding
tetraalkylammonium iodide or hydroxide (6.17 mmol) in H2O or
MeOH (60 mL) was added. The formed precipitate was filtered off,
washed with water to afford the tetraalkylammonium 2,4,6-
tris(fluorosulfonyl)phenolate (16–18).
Chem. Abstr. 91 (1979) 157378f.
[10] W.A. Sheppard, C.M. Sharts, Organic Fluorine Chemistry, W.A. Benjamin INC, New
York, 1969, p. 355.
[11] L.M. Yagupolskii, in: L.N. Markovskii (Ed.), Aromatic and Heterocyclic Compounds
with Fluorine-containing Substituents (Aromaticheskie i Geterotsiklicheskie Soe-
dineniya s Ftorosoderzhazchimi Zamestitelyami), ‘‘Naukova Dumka’’ Publishing,
Kiev, USSR, 1988, 320 pp. (in Russian);
Chem. Abstr. 111 (1989) 232772s.
[12] (a) O. Lustig, E. Katscher, Monatsh. Chem. 48 (1927) 87–97;
(b) G. Booth, Synth. Commun. 13 (1983) 659–661;
4.2.14.1. Tetramethylammonium 2,4,6-tris(fluorosulfonyl)phenolate
(16). Tetramethylammonium iodide was used. Yield 81%. m.p.
240–242.7 8C. 1H NMR ([D6]DMSO):
d
d
= 3.09 (s, 12H, CH3), 8.24 (s,
= 57.2 (s, 2F, o-SO2F), 70.9 (s,
2H, ArH) ppm. 19F NMR ([D6]DMSO):
1F, p-SO2F) ppm. C10H14F3NO7S3 (413.41); calcd. C 29.05, H 3.41, N
3.39, S 23.27; found C 29.17, H 3.34, N 3.48, S 23.35.
(c) L.Z. Gandelsman, L.I. Trushanina, Ukr. Khim. Zh. (Ukrainian Chem. J. USSR), 56
(1990) 1118–1119 (in Russian);
Chem. Abstr. 114 (1991) 184907c;
(d) V. Percec, T.K. Bera, B.B. De, Y. Sanai, J. Smith, M.N. Holerea, B. Barboiu, J. Org.
Chem. 66 (2001) 2104–2117.
4.2.14.2. Tetraethylammonium
2,4,6-tris(fluorosulfonyl)phenolate
(17). Tetraethylammonium iodide was used. Yield 93%. m.p.
[13] Beilsteins Handbuch der Organischen Chemie, 11, III, p. 483.
[14] (a) W. Davies, J.H. Dick, J. Chem. Soc. (1931) 2104–2109;
(b) W. Davies, J.H. Dick, J. Chem. Soc. (1932) 2042–2046;
(c) A. De Cat, R. Van Poucke, J. Org. Chem. 28 (1963) 3426–3430.
[15] V.N. Boiko, A.A. Filatov, Yu.L. Yagupolskii, V.D. Prisyazhnyi, S.I. Chernukhin, D.O.
Tret’yakov, Patent of Ukraine 72649 (2005).
168–170 8C (propanol-2). 1H NMR ([D6]DMSO):
d = 1.16 (t,
2JH,H = 7.3 Hz, 12H, CH3), 3.20 (q, JH,H = 7.3 Hz, 8H, CH2) 8.24 (s,
2
2H, ArH) ppm. 19F NMR ([D6]DMSO):
d = 55.2 (s, 2F, o-SO2F), 68.8 (s,
1F, p-SO2F) ppm. C14H22F3NO7S3 (469.52); calcd. C 35.81, H 4.72, N
2.98, S 20.49; found C 35.79, H 4.79, N 3.07, S 20.35.
[16] (a) J. Pollak, E. Gebauer-Fulnegg, Monatsh. Chem. 46 (1925) 383–397;
(b) W. Davies, E.S. Wood, J. Chem. Soc. (1928) 1122–1131.
[17] E. Riesz, F. Berndt, G. Hitschmann, Monatsh. Chem. 50 (1928) 328–334.
[18] (a) T.A. Bianchi, L.A. Cate, J. Org. Chem. 42 (1977) 2031–2032;
(b) G.D. Yadav, P.M. Paranjape, J. Fluorine Chem. 126 (2005) 99–106;
(c) M. van der Puy, J. Org. Chem. 53 (1988) 4398–4401.
[19] A. Sekiya, N. Ishikawa, Bull. Chem. Soc. Jpn. 51 (1978) 1267–1268.
[20] V.N. Boiko, I.V. Gogoman, G.M. Shchupak, L.M. Yagupolskii, Zh. Organ. Khim. [J.
Org. Chem. USSR] 23 (1987) 2586–2591 (in Russian);
Chem. Abstr. 109 (1988) 92387b.
[21] A. Kutt, I. Leito, I. Kaljurand, L. Soovali, V.M. Vlasov, L.M. Yagupolskii, I.A. Kopel, J.
Org. Chem. 71 (2006) 2829–2838.
[22] E.N. Duesler, J.H. Engelmann, D.Y. Curtin, I.C. Paul, Cryst. Struct. Commun. 7
(1978) 449–753, CAN 89: 98183; PICRAC.
4.2.14.3. Tetrabuthylammonium 2,4,6-tris(fluorosulfonyl)phenolate
(18). Tetrabuthylammonium hydroxide 0.1 M solution in MeOH
was used. Yield 95%. m.p. 91.6–93.6 8C. 1H NMR ([D6]DMSO):
2
2
d
= 0.93 (t, JH,H = 7.2 Hz, 12H, CH3), 1.30 (m, JH,H = 7.5 Hz, 8H,
CH2), 1.56 (m, 8H, CH2), 3.15 (m, 8H, CH2) 8.24 (s, 2H, ArH) ppm. 19
NMR ([D6]DMSO): = 57.1 (s, 2F, o-SO2F), 70.8 (s, 1F, p-SO2F) ppm.
22H38F3NO7S3 (581.74); calcd. C 45.42, H 6.58, N 2.41, S 16.54;
F
d
C
found C 45.55, H 6.68, N 2.49, S 16.31.
[23] J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem. 107 (1995) 1689–
1708;
Acknowledgment
J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. Engl. 34
(1995) 1555–1573.
The generous financial support of this work by the DFG (Grant
436 UKR 113) is gratefully acknowledged.
[24] J.M. Harrowfield, B.W. Skelton, A.H. White, Aust. J. Chem. 48 (1995) 1311–1331.
[25] J.M. Harrowfield, B.W. Skelton, A.H. White, Aust. J. Chem. 48 (1995) 1333–1347.
[26] K. Honda, H. Yamawaki, M. Matsukawa, M. Goto, T. Matsunaga, K. Aoki, M.
Yoshida, S. Fujiwara, Acta Cryst. C59 (2003) m319–m321.
[27] J. Harrowfield, J. Chem. Soc., Dalton Trans. (1996) 3165–3171.
[28] H. Takayanagi, M. Goto, K. Takeda, Y. Osa, Yakugaku Zasshi 124 (2004) 751–767.
[29] H. Takayanagi, R. Kawaoka, K. Chin, M. Goto, S. Yamaguchi, H. Ogura, Anal. Sci. 6
(1990) 321–322.
References
[1] T.J. de Boer, I.P. Dirks, in: H. Feuer (Ed.), The Chemistry of Nitro and Nitroso
Groups, Pt. 1, Interscience, New York, 1969, pp. 487–612.
[2] (a) G.A. Artamkina, M.P. Egorov, I.P. Beletskaya, Chem. Rev. 82 (1982) 427–459;
(b) F. Terrier, Chem. Rev. 82 (1982) 77–152;
[30] N. Vembu, M. Nallu, J. Garrison, W.J. Young, Acta Cryst. E59 (2003) o913–o916.
(c) M.J. Strauss, Chem. Rev. 70 (1970) 667–712;
(d) M.J. Strauss, Acc. Chem. Res. 7 (1974) 181–188;