K. Y. Lee and D. J. Mooney, Chem. Rev., 2001, 101, 1869; (d)
A. M. Bieser and J. C. Tiller, Chem. Commun., 2005, 3942.
DAX-400 (Bruker, Sweden) 200 MHz NMR spectrometer in
CDCl3 as solvent. All measurements were done at room
temperature (298 K) unless otherwise mentioned.
4 (a) M. George and R. G. Weiss, Acc. Chem. Res., 2006, 39, 489; (b)
N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821; (c)
A. Ajayaghosh and V. K. Praveen, Acc. Chem. Res., 2007, 40, 644;
(d) J. Becerril, M. I. Burguete, B. Escuder, S. V. Luis, J. F. Miravet
and M. Querol, Chem. Commun., 2002, 738; (e) P. Dastidar, Chem.
Soc. Rev., 2008, 37, 2699.
A weighed amount of solid gelators taken in screw caped vials
was dissolved in different organic solvents by heating and
subsequently allowed to stand at 25 ꢀC in a thermostatted water
bath to obtain a stable gel as confirmed by the resistance to flow
under gravity upon inversion of the vial.
5 Y.-c. Lin and R. G. Weiss, Macromolecules, 1987, 20, 414.
6 (a) K. Murata, M. Aoki, T. Susuki, T. Harada, H. Kawabata,
T. Komori, F. Ohseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc.,
1994, 116, 6664; (b) A. Ajayaghosh and S. J. George, J. Am. Chem.
Soc., 2001, 123, 5148; (c) N. Pilpel, Chem. Rev., 1963, 63, 221; (d)
V. J. Bujanowski, D. E. Katsoulis and M. J. Ziemelis, J. Mater.
Chem., 1994, 4, 1181; (e) A. R. Hirst and D. K. Smith, Chem.–Eur.
J., 2005, 11, 5496; (f) A. Ajayaghosh, S. J. George and
V. K. Parveen, Angew. Chem., Int. Ed., 2003, 42, 332; (g)
D. J. Abdallah and R. G. Weiss, Langmuir, 2000, 16, 352; (h)
T. Nakashima and N. Kimizuka, Adv. Mater., 2002, 14, 1113; (i)
T. Brotin, R. Utermohlen, F. Fages, H. Bouas-Laurent and
J. P. Desvergne, J. Chem. Soc., Chem. Commun., 1991, 416; (j)
D. K. Smith, Adv. Mater., 2006, 18, 2773; (k) M.-
O. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed, Chem.
Rev., 2010, 110, 1960; (l) J. W. Steed, Chem. Soc. Rev., 2010, 39,
3686; (m) N. N. Adarsh, D. K. Kumar and P. Dastidar,
Tetrahedron, 2007, 63, 7386; (n) F. Placin, J.-P. Desvergne and J.-
C. Lassgues, Chem. Mater., 2001, 13, 117; (o) K. Hanabusa,
T. Miki, Y. Taguchi, T. Koyama and H. Shirai, J. Chem. Soc.,
Chem. Commun., 1993, 1382.
7 (a) M. Sarkar and K. Biradha, Cryst. Growth Des., 2006, 6, 202; (b)
L. Rajput, S. Singha and K. Biradha, Cryst. Growth Des., 2007, 7,
2788; (c) L. Rajput and K. Biradha, Cryst. Growth Des., 2009, 9, 40.
8 C. E. Stanley, N. Clarke, K. M. Anderson, J. A. Elder, J. T. Lenthall
and J. W. Steed, Chem. Commun., 2006, 3199.
9 (a) K. Hanabusa, R. Tanaka, M. Suzuki, M. Kimura and H. Shirai,
Adv. Mater., 1997, 9, 1095; (b) T. Patra, A. Pal and J. Dey, J.
Colloid Interface Sci., 2010, 344, 10; (c) A. Pal, S. Shrivastava and
J. Dey, Chem. Commun., 2009, 6997; (d) A. Ghosh and J. dey,
Langmuir, 2009, 25, 8466.
The gel melting temperature (Tgel) was determined by placing
the screw caped glass vials containing gels in a temperature-
controlled water bath (Julabo, Model F 12) and visually
observing the flow upon tilt for every degree rise in temperature.
A Field-Emission Scanning Electron Microscope (FESEM,
Zeiss, Supra-40) operating at 5–10 kV was used to get the
micrograph. For electron micrographs, the hot sample solution
was placed on the aluminium foil, allowed to cool at room
temperature and then dried in a desiccator for 24 h. A layer of
gold was sputtered on top to make conducting surface and finally
the specimen was transferred into the microscope.
For all the gel samples, the rheological measurements were
performed on a Bohlin CVO D100 (Malvern, UK) controlled-
stress rheometer using a 20 mm diameter parallel plate geometry
with a constant tool gap of 200 mm. The organogel was placed on
lower plate and a stress amplitude sweep experiment was carried
out at a constant frequency of 1 Hz at 25 ꢀC to obtain the storage
or elastic modulus, G0, and the loss or viscous modulus, G00. The
frequency sweep measurements were carried out at a constant
stress of 300 Pa in the linear viscoelastic range.
The polarizing optical light micrographs for the samples were
obtained from a LEICA DMLM (Germany) optical microscope
by transmitted light under crossed Nicol and fitted with a JVC-
KY-F550E imaging system. The samples for optical microscopy
contained gelators at a concentration less than the corresponding
minimum gelation concentration. A drop of the liquid was
placed on the microscope slide and placed under microscope.
10 (a) A. Vintiloiu and J.-C. Leroux, J. Controlled Release, 2008, 125,
179; (b) Y. A. Shchipunov, E. V. Shumilina and H. Hoffmann, J.
Colloid Interface Sci., 1998, 199, 218.
11 (a) F. S. Schoonbeek, J. H. van Esch, R. Hulst, R. M. Kellogg and
B. N. Feringa, Chem.–Eur. J., 2000, 6, 2633; (b) J. van Esch,
F. Schoonbeek, M. de Loos, H. Kooijman, A. L. Spek,
R. M. Kellogg and B. L. Feringa, Chem.–Eur. J., 1999, 5, 937; (c)
Y. Jeong, K. Hanabusa, H. Masunaga, I. Akiba, K. Miyoshi,
S. Sakurai and K. Sakurai, Langmuir, 2005, 21, 586; (d) J. Brinksma,
B. L. Feringa, R. M. Kellogg, R. Vreeker and J. van Esch, Langmuir,
2000, 16, 9249; (e) M. De Loos, A. G. J. Ligtenbarg, J. Van Esch,
H. Kooijman, A. L. Spek, R. Hage, R. M. Kellogg and
B. L. Feringa, Eur. J. Org. Chem., 2000, 3675.
12 (a) K. J. C. van Bommel, C. van der Pol, I. Muizebelt, A. Friggeri,
A. Heeres, A. Meetsma, B. L. Feringa and J. van Esch, Angew.
Chem., Int. Ed., 2004, 43, 1663; (b) M. M. J. Smulders,
A. P. H. J. Schenning and E. W. Meijer, J. Am. Chem. Soc., 2008,
130, 606; (c) P. Jonkheijm, P. van der Schoot, A. P. H. J. Schenning
and E. W. Meijer, Science, 2006, 313, 80; (d) L. Rajput,
V. V. Chernyshev and K. Biradha, Chem. Commun., 2010, 46, 6530;
(e) M. L. Bushey, T. Q. Nguyen, W. Zhang, D. Horoszewski and
C. Nuckolls, Angew. Chem., Int. Ed., 2004, 34, 5446; (f)
M. P. Lightfoot, F. S. Mair, R. G. Pritchard and J. E. Warren,
Chem. Commun., 1999, 1945; (g) J. J. van Gorp,
J. A. J. M. Vekemans and E. W. Meijer, J. Am. Chem. Soc., 2002,
124, 14759; (h) J. van Gestel, A. R. A. Palmans, B. Titulaer,
J. A. J. M. Vekemans and E. W. Meijer, J. Am. Chem. Soc., 2005,
127, 5490; (i) K. Hanabusa, C. Koto, M. Kimura, H. Shirai and
A. Kakehi, Chem. Lett., 1997, 26, 429; (j) A. J. Wilson, J. van
Gestel, R. P. Sijbesma and E. W. Meijer, Chem. Commun., 2006,
4404; (k) M. L. Bushey, A. Hwang, P. W. Stephens and
C. Nuckolls, Angew. Chem., Int. Ed., 2002, 41, 2828.
Acknowledgements
We acknowledge funding from DST for financial support. SS
thanks UGC for a senior research fellowship. We thank Dr S.
Dhara of the School of Medical Science and Technology, IIT
Kharagpur, for assistance with the rheological measurements.
References
1 (a) P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133; (b)
J. C. Tiller, Angew. Chem., Int. Ed., 2003, 42, 3072; (c) S. Kyonaka,
K. Sugiyasu, S. Shinkai and I. Hamachi, J. Am. Chem. Soc., 2002,
124, 10954; (d) S. Bhattacharya and Y. K. Ghosh, Chem. Commun.,
2001, 185; (e) S. Debnath, A. Shome, S. Dutta and P. K. Das,
Chem. –Eur. J., 2008, 14, 6870; (f) R. Denoyel and E. S. Rey,
Langmuir, 1998, 14, 7321.
2 (a) S. Kobayashi, N. Hamasaki, M. Suzuki, M. Kimura, H. Shinkai
and K. Hanabusa, J. Am. Chem. Soc., 2002, 124, 6550; (b)
D. Khatua, R. Maity and J. Dey, Chem. Commun., 2006, 4903; (c)
G. M. Whitesides, J. P. Mathias and C. T. Seto, Science, 1991, 254,
1312; (d) T. Patra, A. Pal and J. Dey, Langmuir, 2010, 26, 7761; (e)
S. Ray, A. K. Das and A. Banerjee, Chem. Mater., 2007, 19, 1633.
3 (a) L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104, 1201; (b)
D. J. Abdallah and R. G. Weiss, Adv. Mater., 2000, 12, 1237; (c)
ꢀ
~
13 J. Becerril, M. Bolte, M. I. Burguete, F. Galindo, E. Garcıa-Espana,
S. V. Luis and J. F. Miravet, J. Am. Chem. Soc., 2003, 125, 6677.
2126 | Soft Matter, 2011, 7, 2121–2126
This journal is ª The Royal Society of Chemistry 2011