ORGANIC
LETTERS
2011
Vol. 13, No. 22
6086–6089
Gold-Catalyzed Oxidative Acyloxylation of
Arenes§
ꢀ
Alexandre Pradal, Patrick Y. Toullec,* and Veronique Michelet*
Chimie ParisTech, Laboratoire Charles Friedel, UMR 7223 11 rue P. et M. Curie, 75231
Paris Cedex 05, France
patrick-toullec@chimie-paristech.fr; veronique-michelet@chimie-paristech.fr
Received September 23, 2011
ABSTRACT
A variety of nonactivated hindered aromatic rings are acyloxylated (22 examples, up to 83% yield) in the presence of PPh3AuCl as the catalyst and
di(acetoxy)iodobenzene as the oxidant. The reaction proceeds at 110 °C in an acid media and allows the formation of both hindered acetoxy and
acyloxy derivatives. This methodology nicely complements the Pd-catalyzed arene acyloxylation reaction, which is not operating on hindered
substrates and allows the Au-catalyzed unprecedented acyloxylation reaction of arenes, implying various carboxylic acids.
Homogeneous gold catalysis has emerged in the past few
years as a very exciting area of research due to its unique
Lewis acid carbophilic properties.1 More recently, the
electrophilicity of gold has been exploited in Csp2-H
activation of arenes. Since the initial works of Kharasch
and Isbell,2 and later on Braustein,3 it is well established
that auration of nonactivated aromatic rings occurs under
mild conditions in the presence of Au(III) complexes.
Subsequent reductive elimination liberates the functiona-
lized aryl compound and a Au(I) species. This transforma-
tion can be made catalytically by the regeneration of the
Au(III) species inthe presenceofanexternaloxidant. After
a long period of underutilization of this concept, in the past
decade, a number of synthetic functionalizations of aromatic
substrates including CꢀC,4 CꢀN5 and CꢀX6 bond forming
reactions have been described (Scheme 1).7 In line with our
research program initiated on gold-catalyzed carbonꢀ
oxygen bond-forming reactions,8 we decided to investigate
(5) (a) Li, Z.; Cappretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem.
Soc. 2007, 129, 12058. (b) Iglesias, A.; Muniz, K. Chem.;Eur. J. 2009,
15, 10563. (c) Gu, L.; Neo, B. N.; Zhang, Y. Org. Lett. 2011, 13, 1872.
(6) (a) Mo, F.; Yan, J. M.; Qiu, D.; Li, F.; Zhang, Y.; Wang, J.
Angew. Chem., Int. Ed. 2010, 49, 2028. (b) Qiu, D.; Mo, F.; Zheng, Z.;
Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 5474.
(7) For recent reviews including seminal examples, see: (a) Garcia, P.;
Malacria, M.; Aubert, C.; Gandon, V.; Fensterbank, L. ChemCatChem
2010, 2, 493. (b) Boorman, T. C.; Larrosa, I. Chem. Soc. Rev. 2011, 40,
1910. (c) Wegner, H. A.; Auzias, M. Angew. Chem., Int. Ed. 2011, 50,
8236. (d) Hopkinson, M. N.; Gee, A. D.; Gouverneur, V. Chem.;Eur. J.
2011, 17, 8248. (e) de Haro, T.; Nevado, C. Synthesis 2011, 2530.
§ Dedicated to Dr. C. Bruneau on the occasion of his 60th birthday.
(1) (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed.
2006, 45, 7896. (b) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. (c)
ꢀ
Chianese, A. R.; Lee, S. J.; Gagne, M. R. Angew. Chem., Int. Ed. 2007,
€
46, 4042. (d) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46,
€
3410. (e) Lee, S. I.; Chatani, N. Chem. Commun. 2009, 371. (f) Furstner,
A. Chem. Soc. Rev. 2009, 38, 3208. (g) Toullec, P. Y.; Michelet, V. Top.
Curr. Chem. 2011, 302, 31.
(2) (a) Kharasch, M. S.; Isbell, H. S. J. Am. Chem. Soc. 1931, 53,
3053. (b) Graaf, P. W. J.; Boersma, J.; van der Kerk, G. J. M. J.
Organomet. Chem. 1976, 105, 399. (c) Fuchita, Y.; Utsunomiya, Y.;
Yasutake, M. J. Chem. Soc., Dalton Trans. 2001, 2330.
^
(8) (a) Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genet, J.-
P. Chem. Commun. 2004, 850. (b) Antoniotti, S.; Genin, E.; Michelet, V.;
^
Genet, J.-P. J. Am. Chem. Soc. 2005, 127, 9976. (c) Genin, E.; Toullec,
^
P. Y.; Antoniotti, S.; Brancour, C.; Genet, J.-P.; Michelet, V. J. Am.
Chem. Soc. 2006, 128, 3112. (d) Genin, E.; Leseurre, L.; Toullec, P. Y.;
Genet, J.-P.; Michelet, V. Synlett 2007, 1780. (e) Neatu, F.; Li, Z.;
(3) (a) Braunstein, P. J. Chem. Soc. Chem. Commun. 1973, 851. (b)
Braunstein, P.; Clark, R. J. H. Inorg. Chem. 1974, 13, 2224.
(4) (a) Hashmi, A. S. K.; Blanco, M. C.; Fischer, D.; Bats, J. W. Eur.
J. Org. Chem. 2006, 1387. (b) Kar, A.; Mangu, N.; Kaiser, H. M.; Beller,
^
Richards, R.; Toullec, P. Y.; Genet, J.-P.; Dumbuya, K.; Gottfried,
J. M.; Steinruck, H.-P.; Parvulescu, V. I.; Michelet, V. Chem.;Eur. J.
€
^
^
2008, 14, 9412. (f) Toullec, P. Y.; Genin, E.; Antoniotti, S.; Genet, J.-P.;
Michelet, V. Synlett 2008, 707. (g) Toullec, P. Y.; Blarre, T.; Michelet, V.
Org. Lett. 2009, 11, 2888. (h) Chao, C.-M.; Toullec, P. Y.; Michelet, V.
Tetrahedron Lett. 2009, 50, 3719. (i) Chao, C.-M.; Genin, E.; Toullec,
ꢀ
ꢀ
ꢀ
M.; Tse, M. K. Chem. Commun. 2008, 386. (c) Harkat, H.; Yenimegue
ꢀ
Dembele, A.; Weibel, J.-M.; Blanc, A.; Pale, P. Tetrahedron 2009, 65,
^
1871. (d) Kar, A.; Mangu, N.; Kaiser, H. M.; Beller, M.; Tse, M. K. J.
Organomet. Chem. 2009, 694, 524. (e) Haro, T.; Nevado, C. J. Am. Chem.
Soc. 2010, 132, 1512.
P. Y.; Genet, J.-P.; Michelet, V. J. Organomet. Chem. 2009, 694, 538. (j)
Pradal, A.; Chao, C.-M.; Vitale, M. R.; Toullec, P. Y.; Michelet, V.
Tetrahedron 2011, 67, 4371.
r
10.1021/ol202577c
Published on Web 10/27/2011
2011 American Chemical Society