ACS Medicinal Chemistry Letters
Letter
(12) Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.;
Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A.
M.; Yang, W. S.; Morrison, B.; Stockwell, B. R. Ferroptosis: an iron-
dependent form of nonapoptotic cell death. Cell 2012, 149 (5), 1060−
1072.
Foundation, the Leukemia and Lymphoma Society, and the
Chemotherapy Foundation.
Notes
The authors declare no competing financial interest.
(13) Ploner, C.; Schmidt, S.; Presul, E.; Renner, K.; Schrocksnadel,
̈
K.; Rainer, J.; Riml, S.; Kofler, R. Glucocorticoid-induced apoptosis
and glucocorticoid resistance in acute lymphoblastic leukemia. J.
Steroid Biochem. Mol. Biol. 2005, 93 (2−5), 153−160.
(14) Schmidt, S.; Irving, J. A. E.; Minto, L.; Matheson, E.; Nicholson,
L.; Ploner, A.; Parson, W.; Kofler, A.; Amort, M.; Erdel, M.; Hall, A.;
Kofler, R. Glucocorticoid resistance in two key models of acute
lymphoblastic leukemia occurs at the level of the glucocorticoid
receptor. FASEB J. 2006, 20 (14), 2600−2602.
(15) Geley, S.; Hartmann, B. L.; Hala, M.; Strasser-Wozak, E. M.;
Kapelari, K.; Kofler, R. Resistance to glucocorticoid-induced apoptosis
in human T-cell acute lymphoblastic leukemia CEM-C1 cells is due to
insufficient glucocorticoid receptor expression. Cancer Res. 1996, 56
(21), 5033−5038.
(16) Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.;
Ebert, B. L.; Gillette, M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T.
R.; Lander, E. S.; Mesirov, J. P. Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression
profiles. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (43), 15545−15550.
(17) Schmidt, S.; Rainer, J.; Riml, S.; Ploner, C.; Jesacher, S.;
ACKNOWLEDGMENTS
■
B.R.S. is an Early Career Scientist of the Howard Hughes
Medical Institute. M-Y. K. is a fellow of the Leukemia and
Lymphoma Society. We acknowledge the assistance of Dr. John
Decatur, and the use of Columbia Chemistry NMR core facility
instruments provided by NSF grant CHE 0840451 and NIH
grant 1S10RR025431-01A1. We thank Dr. Y. Itagaki for
assistance with MS analyses.
ABBREVIATIONS
■
ALL, acute lymphoblastic leukemia; T-ALL, T-cell acute
lymphoblastic leukemia; GC, glucocorticoid; GR, glucocorti-
coid receptor; Dex, dexamethasone; CE, compound E; LDA,
lithium di-isopropyl amide; PARP, poly ADP ribose polymerase
REFERENCES
■
Achmuller, C.; Presul, E.; Skvortsov, S.; Crazzolara, R.; Fiegl, M.;
̈
(1) Goldberg, J. M.; Silverman, L. B.; Levy, D. E.; Dalton, V. K.;
Gelber, R. D.; Lehmann, L.; Cohen, H. J.; Sallan, S. E.; Asselin, B. L.
Childhood T-cell acute lymphoblastic leukemia: the Dana−Farber
Cancer Institute acute lymphoblastic leukemia consortium experience.
Am. J. Clin. Oncol. 2003, 21 (19), 3616−3622.
Raivio, T.; Janne, O. A.; Geley, S.; Meister, B.; Kofler, R. Identification
̈
of glucocorticoid-response genes in children with acute lymphoblastic
leukemia. Blood 2006, 107 (5), 2061−2069.
(2) Beesley, A. H.; Firth, M. J.; Ford, J.; Weller, R. E.; Freitas, J. R.;
Perera, K. U.; Kees, U. R. Glucocorticoid resistance in T-lineage acute
lymphoblastic leukaemia is associated with a proliferative metabolism.
Br. J. Cancer 2009, 100 (12), 1926−1936.
(3) Dordelmann, M.; Reiter, A.; Borkhardt, A.; Ludwig, W. D.; Gotz,
̈
̈
N.; Viehmann, S.; Gadner, H.; Riehm, H.; Schrappe, M. Prednisone
response is the strongest predictor of treatment outcome in infant
acute lymphoblastic leukemia. Blood 1999, 94 (4), 1209−1217.
(4) Kaspers, G. J.; Pieters, R.; Klumper, E.; De Waal, F. C.; Veerman,
A. J. Glucocorticoid resistance in childhood leukemia. Leuk. Lymphoma
1994, 13 (3−4), 187−201.
(5) Kaspers, G. J. L.; Wijnands, J. J. M.; Hartmann, R.; Huismans, L.;
Loonen, A. H.; Stackelberg, A.; Henze, G.; Pieters, R.; Hahlen, K.; Van
̈
Wering, E. R.; Veerman, A. J. P. Immunophenotypic cell lineage and in
vitro cellular drug resistance in childhood relapsed acute lymphoblastic
leukaemia. Eur. J. Cancer 2005, 41 (9), 1300−1303.
(6) Palomero, T.; Barnes, K. C.; Real, P. J.; Glade Bender, J. L.; Sulis,
M. L.; Murty, V. V.; Colovai, A. I.; Balbin, M.; Ferrando, A. A.
CUTLL1, a novel human T-cell lymphoma cell line with t(7;9)
rearrangement, aberrant NOTCH1 activation and high sensitivity to γ-
secretase inhibitors. Leukemia 2006, 20 (7), 1279−1287.
(7) Weng, A. P.; Ferrando, A. A.; Lee, W.; Morris, J. P. Activating
mutations of NOTCH1 in human T cell acute lymphoblastic leukemia.
Science 2004, 306 (5694), 269−271.
(8) Deftos, M. L.; He, Y. W.; Ojala, E. W.; Bevan, M. J. Correlating
notch signaling with thymocyte maturation. Immunity 1998, 9 (6),
777−786.
(9) Real, P. J.; Tosello, V.; Palomero, T.; Castillo, M.; Hernando, E.;
de Stanchina, E.; Sulis, M. L.; Barnes, K.; Sawai, C.; Homminga, I.;
Meijerink, J.; Aifantis, I.; Basso, G.; Cordon-Cardo, C.; Ai, W.;
Ferrando, A. γ-Secretase inhibitors reverse glucocorticoid resistance in
T cell acute lymphoblastic leukemia. Nat. Med. 2008, 15 (1), 50−58.
(10) Cheng, A.; Merz, K. M. Prediction of aqueous solubility of a
diverse set of compounds using quantitative structure-property
relationships. J. Med. Chem. 2003, 46 (17), 3572−3580.
(11) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 2001, 46 (1−3), 3−26.
759
dx.doi.org/10.1021/ml500044g | ACS Med. Chem. Lett. 2014, 5, 754−759