1308
E. Kolvari et al. / Chinese Chemical Letters 22 (2011) 1305–1308
SLES forms micelles in water and can dissolves insoluble starting materials. The dissolved material reacted
gradually on stirring the reaction mixture at room temperature and was complete in 2.5–5 h giving 70–94% yields of
bis(indolyl)methanes.
In conclusion, we have presented a green procedure for the synthesis of bis(indolyl)methanes from indoles and
aromatic aldehydes in the presence of SLES in water as green solvent. The present procedure has many advantages
such as mild conditions, easy operation procedures and environment friendly.
General experimental procedure for synthesis of bis(indolyl)methanes: To a mixture of indole (2 mmol), aldehyde
(1 mmol) in water (5 mL), SLES (10 mol%) was added and stirred at room temperature. The mixture became emulsive
and theproductgradually precipitated. TheprogressofreactionmonitoredbyTLC and thereaction wenttocompletionin
appropriate time (Table 3). After completion of the reaction the almost pure insoluble bis(indoly)-methane was filtered
and recrystallized from suitable solvent like ethanol–water for further purification.
Acknowledgments
We thank Semnan University research councils for financial support of this work. Also we would like to
acknowledge and thank the Condor Company for their generous support.
References
[1] R.J. Sundberg, The Chemistry of Indoles, Academic Press, New York, 1996.
[2] M. Shiri, M.A. Zolfigol, H.G. Kruger, et al. Chem. Rev. 110 (2010) 2250.
[3] P. Galletti, A. Quintavalla, C. Ventrici, et al. New J. Chem. 34 (2010) 2861.
[4] G. Bifulco, I. Bruno, R. Riccio, et al. J. Nat. Prod. 58 (1995) 1254.
[5] T.R. Garbe, M. Kobayashi, N. Shimizu, et al. J. Nat. Prod. 63 (2000) 596.
[6] T. Osawa, M. Namiki, Tetrahedron Lett. 24 (1983) 4719.
[7] N. Ichite, M. Chougule, A.R. Patel, et al. Mol. Cancer Ther. 9 (2010) 3003.
[8] P. Diana, A. Carbone, P. Barraja, et al. Bioorg. Med. Chem. 18 (2010) 4524.
[9] J.S. Glasby, Encyclopedia of the Alkaloids, Plenum Press, New York, 1975.
[10] L. Wang, W. Wei, Y. Guo, et al. Spectrochim. Acta A 78 (2011) 726.
[11] M. Ghaedi, K. Niknam, K. Taheri, et al. Food Chem. Toxicol. 48 (2010) 891.
[12] M.A. Naik, D. Sachdev, A. Dubey, Catal. Commun. 11 (2010) 1148.
[13] E. Rafiee, Z. Zolfagharifar, M. Joshaghani, et al. Synth. Commun. 41 (2011) 459.
[14] S.A. Sadaphal, A.H. Kategaonkar, V.B. Labade, et al. Chin. Chem. Lett. 21 (2010) 39.
[15] F. Shirini, A. Yahyazadeh, M. Abedini, et al. Bull. Korean Chem. Soc. 31 (2010) 1715.
[16] J.S. Yadav, M.K. Gupta, R. Jain, et al. Monatsh. Chem. 141 (2010) 1001.
[17] M.A. Zolfigol, A. Khazaei, A.R. Moosavi-Zare, et al. Org. Prep. Proced. Int. 42 (2010) 95.
[18] S. Amiya, P.D. Deo, Res. J. Chem. Env. 14 (2010) 19.
[19] M. Kidwai, N. Bura, N.K. Mishra, Indian J. Chem. Sect. B 50 (2011) 229.
[20] G.A. Meshram, V.D. Patil, Synth. Commun. 40 (2010) 29.
[21] M. Rahimizadeh, Z. Bakhtiarpoor, H. Eshghi, et al. Monatsh. Chem. 140 (2009) 1465.
´
[22] C.C. Silveira, S.R. Mendes, F.M. Lıbero, et al. Tetrahedron Lett. 50 (2009) 6060.
[23] F. Shirini, M.S. Langroodi, M. Abedini, Chin. Chem. Lett. 21 (2010) 1342.
[24] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, London, 1998.
[25] U.M. Lindstrom, Organic Reactions in Water: Principles, Strategies and Applications, Blackwell, Oxford, 2007.
[26] J.T. Li, M.X. Sun, G.Y. He, et al. Ultrason. Sonochem. 18 (2011) 412.
[27] M.A. Zolfigol, P. Salehi, M. Shiri, et al. Catal. Commun. 8 (2007) 173.
[28] Y.Y. Peng, Q.L. Zhang, J.J. Yuan, et al. Chin. J. Chem. 26 (2008) 2228.
[29] M.L. Deb, P.J. Bhuyan, Tetrahedron Lett. 47 (2006) 1441.
[30] R. Ghorbani-Vaghei, H. Veisi, H. Keypour, et al. Mol. Diversity 14 (2010) 87.