8 Investigation of several solvents: neat: 2a, 8%, 3a, 3%; octane: 2a,
30%, 3a, 17%; toluene: 2a, 27%, 3a, 24%. No reaction: 1,4-dioxane,
THF, DMSO, DMF.
9 We have reported on rhenium-catalyzed transformations via aro-
matic C–H bond activation. See: (a) Y. Kuninobu, A. Kawata and
K. Takai, J. Am. Chem. Soc., 2005, 127, 13498; (b) Y. Kuninobu,
Y. Nishina, M. Shouho and K. Takai, Angew. Chem., Int. Ed.,
2006, 45, 2766; (c) Y. Kuninobu, P. Yu and K. Takai, Org. Lett.,
2010, 12, 4274; (d) Y. Kuninobu, T. Nakahara, P. Yu and
K. Takai, J. Organomet. Chem., 2011, 696, 348.
10 For examples of the synthesis of 2-allylbenzoate by cross-coupling
reaction, see: (a) P. H. Lee, S.-Y. Sung and K. Lee, Org. Lett.,
2001, 3, 3201; (b) S. E. Denmark and N. S. Wernwe, J. Am. Chem.
Soc., 2008, 130, 16382.
11 We have already reported rhenium-catalyzed Tsuji–Trost type
reaction: T. Ureshino, S. S. Yudha, Y. Kuninobu, K. Takai, The
88th Annual Meeting of the Chemical Society of Japan, 3H1-42.
12 For transformations via olefinic C-H bond activation, see:
(a) F. Kakiuchi, Y. Tanaka, T. Satoh, N. Chatani and S. Murai,
Chem. Lett., 1995, 24, 679; (b) B. M. Trost, K. Imi and
I. W. Davies, J. Am. Chem. Soc., 1995, 117, 5371;
(c) F. Kakiuchi, T. Satoh, K. Igi, N. Chatani and S. Murai, Chem.
Lett., 2001, 30, 386; (d) Y.-G. Lim, J.-B. Kang, K. Lee and
Y. H. Kim, Heteroatom Chem., 2002, 13, 346; (e) D. A. Colby,
R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2006,
128, 5604; (f) Y. Kuninobu, Y. Nishina, T. Matsuki and
K. Takai, J. Am. Chem. Soc., 2008, 130, 14062;
(g) Y. Kuninobu, Y. Fujii, T. Matsuki, Y. Nishima and
K. Takai, Org. Lett., 2009, 11, 2711 and references therein.
13 In this reaction, 2-methylbenzoic acid was also formed. In addi-
tion, the yield of 9 was not improved by adding allylic acetate 5.
14 For carboxylic acid-directed regioselective C–H bond transforma-
tions, see: (a) D.-H. Wang, K. M. Engle and J.-Q. Yu, Science,
2010, 327, 315; (b) K. M. Engle, B.-F. Shi, D.-H. Wang and
J.-Q. Yu, Angew. Chem., Int. Ed., 2010, 49, 6169.
15 There have been some reports on a transformation via C–H bond
activation using a directing group in a bidentate manner. See: (a) B.
V. S. Reddy, L. R. Reddy and E. J. Corey, Org. Lett., 2006,
8, 3391; (b) F.-R. Gou, X.-C. Wang, P.-F. Huo, H.-P. Bi,
Z.-H. Guan and Y.-M. Liang, Org. Lett., 2009, 11, 5726;
(c) D. Shavashov and O. Daugulis, J. Am. Chem. Soc., 2010,
132, 3965; (d) N. Hasegawa, V. Charra, S. Inoue, Y. Fukumoto
and N. Chatani, J. Am. Chem. Soc., 2011, 133, 8070 and references
therein.
Scheme 1 Proposed mechanism for allylation.
(or acrylate) to the rhenium center (C–H bond activation); (3)
formation of an allyl rhenium intermediate; and (4) reductive
elimination to give the allylated product and regenerate the
rhenium catalyst. In this mechanism, p-allyl rhenium inter-
mediates A and B must be formed as shown in Scheme 1.17,18
Another possible pathway is that p-allyl rhenium intermediate
A is converted directly to B via C–H bond activation.
In conclusion, we have succeeded in the allylation of
aromatic and olefinic C–H bonds using a rhenium complex,
Re2(CO)10, as a catalyst. The reaction occurs at the ortho-
position of benzoates and the cis-b-position of acrylates regio-
and stereoselectively. In addition, the olefin moiety of the
products was not isomerized. This reaction is advantageous
over both the Friedel–Crafts reaction and Claisen rearrange-
ment because it can achieve regioselective allylation of benzoic
and acrylic acids. We hope that this reaction will provide
useful insight into C–H bond transformations.
This work was partially supported by the Ministry of
Education, Culture, Sports, Science, and Technology of Japan.
Notes and references
16 In this reaction, the hydroxycarbonyl group works as a directing
group. There are some examples using hydroxycarbonyl as a
directing group to promote regioselective C–H functionalizations.
See: (a) H. A. Chiong, Q.-N. Pham and O. Daugulis, J. Am. Chem.
Soc., 2007, 129, 9879; (b) M. Nakano, H. Tsurugi, T. Satoh and
M. Miura, Org. Lett., 2008, 10, 1851; (c) R. Giri and J.-Q. Yu,
J. Am. Chem. Soc., 2008, 130, 14082; (d) S. Mochida, K. Hirano,
T. Satoh and M. Miura, Org. Lett., 2010, 12, 5776. See also,
ref. 16a.
17 If the rate of the equilibrium between the p-allyl rhenium inter-
mediate A and the two s-allyl rhenium intermediates is much faster
than the rate of C–H bond activation and the following steps, there
is a possibility that intermediate B does not exist. In the experiment
run for 6 h, the ratio of hydrogen atoms in 1a-d0 (Hj/Hk + Hl =
0.18/1.82 = 0.099) was much smaller than the ratio of hydrogen
atoms in 2a-d (Ha/Hb + Hc = 1.10/0.90 = 1.2). This result
indicates that another scrambling step must exist after the formation
of p-allyl rhenium intermediate A. Therefore, we are tempted to
assume the existence of intermediate B.
1 For examples, see: (a) J.-H. Min, J.-S. Lee, J.-D. Yang and S. Koo,
J. Org. Chem., 2003, 68, 7925; (b) M. Niggemann and M. J. Meel,
Angew. Chem., Int. Ed., 2010, 49, 3684.
2 (a) L. Claisen, Ber. Deutsch. Chem. Ges., 1913, 45, 3157; (b) L. Claisen
and O. Eisleb, Justus Liebigs Ann. Chem., 1914, 401, 21.
3 For reviews, see: (a) F. Kakiuchi and S. Murai, Top. Organomet.
Chem., 1999, 3, 47; (b) Y. Guari, S. Sabo-Etienne and B. Chaudret,
Eur. J. Inorg. Chem., 1999, 1047; (c) G. Dyker, Angew. Chem., Int.
Ed., 1999, 38, 1698; (d) V. Ritleng, C. Sirlin and M. Pfeffer, Chem.
Rev., 2002, 102, 1731; (e) F. Kakiuchi and T. Kochi, Synthesis, 2008,
3013; (f) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev.,
2010, 110, 624; (g) T. W. Lyons and M. S. Sanford, Chem. Rev.,
2010, 110, 1147; (h) T. Satoh and M. Miura, Synthesis, 2010, 3395.
4 (a) S. Oi, Y. Tanaka and Y. Inoue, Organometallics, 2006,
25, 4773; (b) K. Cheng, B. Yao, J. Zhao and Y. Zhang, Org. Lett.,
2008, 10, 5309; (c) Y. J. Zhang, E. Skucas and M. J. Krische, Org.
Lett., 2009, 11, 4248.
5 For a recent example of a review on transition metal-catalyzed
decarboxylative allylation, see: J. D. Weaver, A. Recio III,
A. J. Grenning and J. A. Tunge, Chem. Rev., 2011, 111, 1846.
6 There has been a recent review on rhenium-catalyzed reactions.
See, Y. Kuninobu and K. Takai, Chem. Rev., 2011, 111, 1938.
7 Investigation of several transition metal complexes: ReBr(CO)5: 2a,
12%, 3a, 6%; [HRe(CO)4]n: 2a, 46%, 3a, 6%. No reaction: Cr(CO)6,
Mo(CO)6, W(CO)6, Mn2(CO)10, MnBr(CO)5, [ReBr(CO)3(thf)]2,
Fe2(CO)9, Fe3(CO)12, Ru3(CO)12, RuH2(CO)(PPh3)3, [CpRu(PPh3)3-
(MeCN)2]PF6, Co2(CO)8, Rh4(CO)12, RhCl(PPh3)3, Ir4(CO)12, AuCl,
PtCl2.
18 There have been several reports on p-allyl rhenium species. See:
(a) B. J. Brisdon, D. A. Edwards and J. W. White, J. Organomet.
Chem., 1979, 175, 113; (b) R. J. Batchelor, F. W. B. Einstein,
R. H. Jones, J.-M. Zhuang and D. Sutton, J. Am. Chem. Soc.,
1989, 111, 3468; (c) G. S. Bodner, K. Emerson, R. D. Larsen and
J. A. Gladysz, Organometallics, 1989, 8, 2399; (d) C. P. Casey and
C. S. Yi, Organometallics, 1990, 9, 2413; (e) W. A. Herrmann,
F. E. Kuhn, C. C. Romao and H. T. Huy, J. Organomet. Chem.,
¨
1994, 481, 227.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10791–10793 10793