Organometallics
ARTICLE
1
31P{1H} NMR (162 MHz, THF-d8, 25 °C): δ 95.20 (d, JRhÀP
=
been deposited at the Cambridge Crystallographic Data Centre
and allocated the deposition number CCDC 818643.
150 Hz). 1H NMR (400 MHz, THF-d8, 25 °C): δ 2.35 (br s, 4H), 1.67
(br m, 4H), 1.10 (br m, 24H). Anal. Calcd (found) for C16H32KO2P2Rh:
%C, 41.74 (38.06); %H, 7.01 (6.53); %N, 0.00 (À0.02).
’ AUTHOR INFORMATION
Synthesis of K[(dippe)Rh(13CN)(Ph)] (3). In a nitrogen-filled
glovebox, unfiltered 2 from the procedure above was added portion-wise
by pipet to a Schlenk flask containing 13CN-labeled benzonitrile (4.62 μL,
0.0444 mmol). The reaction solution was stirred for 44 h, during which
time the solution changed from dark red to cherry red. The reaction was
complete after 1 day of stirring. An aliquot of the reaction solution was
taken and analyzed by 31P NMR spectroscopy, which showed that 80%
of 3 and 20% of A had formed (by integration). The reaction solution
was filtered through Celite to remove KCl. A was removed by concentrat-
ing the reaction solution to dryness and washing the residue with hexanes
(3 mL) to remove A. The solid was redissolved in THF, evaporated to
dryness, and dried for 1 day by vacuum. Yield: 9.8 mg (43%). Past trials
had shown that failure to redissolve in THF leads to significant de-
composition typified by the formation of a cinnamon brown powder and
poor analytical data (Anal. Calcd (found): %C, 49.70 (23.42); %H, 7.35
(2.94); %N, 2.76 (1.52)). 1H NMR (400 MHz, THF-d8, 25 °C): δ 7.64
(br s, 2H), 6.78 (t, J = 6.8 Hz, 2H), 6.57 (t, J = 6.8 Hz, 1H), 2.05 (m, 2H),
1.94 (m, 2H), 1.39À1.20 (m, 10H), 1.10À1.00 (m, 12H), 0.90 (dd, J =
Corresponding Author
*E-mail: jones@chem.rochester.edu.
’ ACKNOWLEDGMENT
Acknowledgement is made to the U.S. Department of Energy,
Office of Basic Sciences, for their support of this work (Grant
DOE86-ER-13569), and to the CENTC Elemental Analysis
Facility at the University of Rochester, funded by NSF CHE-
0650456.
’ REFERENCES
(1) Luo, Y.-R. Handbook of Bond Dissociation Energies In Organic
Compounds; CRC Press: New York, 2007.
(2) Garcia, J. J.; Brunkan, N. M.; Jones, W. D. J. Am. Chem. Soc. 2002,
124, 9547.
(3) Li, T.; Brennessel, W. W.; Jones, W. D. Organometallics 2010,
29, 2430.
(4) Swartz, B. D.; Reinartz, N. M.; Brennessel, W. W.; Jones, W. D.
J. Am. Chem. Soc. 2008, 130, 8548.
7, Hz, 6H). 13C NMR (100 MHz, THF-d8, 25 °C): δ 160.59 (ddd, JRhÀP
=
47.3, JPÀC = 94.5, JPÀC = 15.5 Hz), 142.43 (s), 125.68 (s), 119.79 (s),
27.42 (s), 27.26 (s), 21.00 (d, J = 6.8 Hz), 20.31 (d, J = 6.8 Hz), 19.55 (s),
19.07, ipso carbon not observed, alkyl resonances may be obscured by
overlap with THF. 31P{1H} NMR (162 MHz, THF-d8, 25 °C): δ 91.08
(5) Schaub, T.; D€oring, C.; Radius, U. Dalton Trans. 2007, 1993.
(6) Swartz, B. D.; Brennessel, W. W.; Jones, W. D. Organometallics
2011, 30, 1523.
(ddd, 1JRhÀP = 115, 2JPÀC = 15.5, 2JPÀP = 22 Hz), 82.84 (ddd, 1JRhÀP
=
2
1
154, JPÀC = 94.5, JPÀP = 22 Hz). Anal. Calcd (found) for C21H37-
RhP2NK: %C, 49.70 (41.06); %H, 7.35 (5.58); %N, 2.76 (2.44).
Synthesis of [(dippe)Rh(η6-Ph-BPh3)] (4). 1 (19.2 mg, 0.0240
mmol) and NaBPh4 (16.0 mg, 0.0467 mmol) were dissolved in 1 mL of
THF and placed in a J-Young NMR tube. The tube was placed in an oil
bath and heated for 6.5 h, during which time NaCl precipitated from
solution. The solution was filtered through Celite and evaporated to
dryness to obtain an orange crystalline solid (32.5 mg, 99%). 1H NMR
(400 MHz, THF-d8, 25 °C): δ 7.18 (d, J = 6.8 Hz, 6H), 6.94 (t, J =
8.0 Hz, 6H), 6.84 (t, J = 6.8 Hz, 3H), 6.68 (d, J = 6.0 Hz, 2H), 6.56 (t, J =
6.0 Hz, 1H), 6.13 (t, J = 6.0 Hz, 2H), 1.68 (m, 4H), 1.18 (m, 4H), 1.02
(m, 24H). 13C NMR (100 MHz, THF-d8, 25 °C): δ 137.23 (s), 126.38
(s), 123.41 (s), 104.59 (s), 100.66 (s), 95.71 (s), 30.81À18.82 (dippe).
31P{1H} NMR (162 MHz, THF-d8, 25 °C): δ 91.79 (dd, 1JRhÀP = 186,
2JPÀP = 23 Hz), 87.49 (dd, 1JRhÀP = 119 Hz, 2JPÀP = 23 Hz). 11B{1H}
NMR (160 MHz, THF-d8, 25 °C): δ À7.21 (s). This compound was
reported previously in ref 19.
(7) Fryzuk, M. D.; Piers, W. E.; Rettig, S. J. Can. J. Chem. 1992,
70, 2381.
(8) Krausse, J.; Marx, G.; Schodl J. Organomet. Chem. 1970, 21, 159.
(9) Brauer, D. J.; Kruger, C.; Roberts, P. J.; Tsay, Y.-H. Angew. Chem.,
Int. Ed. 1976, 15, 48.
(10) Wyrwa, R.; Goris, H. Z. Anorg. Allg. Chem. 1999, 625, 1904.
(11) Bazhenova, T. A.; Kachapina, L. M.; Shilov, A. E.; Antipin,
M. Y.; Struchkov, U. T. J. Organomet. Chem. 1992, 428, 107.
(12) Kunin, A. A.; Nanni, E. J.; Eisenberg, R. Inorg. Chem. 1985,
24, 1852.
(13) Bogdanovic, B.; Leitner, W.; Six, C.; Wilczok, U.; Wittmann, K.
Angew. Chem., Int. Ed. Engl. 1997, 36, 502.
(14) Ellis, J. E. Organometallics 2001, 22, 3322.
(15) See, for example: Kinney, R. J.; Jones, W. D.; Bergman, R. G.
J. Am. Chem. Soc. 1978, 100, 7902.
(16) Moloy, K. G.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 7696.
(17) Pilloni, G.; Zotti, G.; Martelli, M. Inorg. Chim. Acta 1975,
13, 213.
Synthesis of Metalloimine 5. In a nitrogen-filled glovebox, 4 (9.6
mg, 0.014 mmol) was dissolved in 1 mL of THF and placed in a J-Young
NMR tube. Benzonitrile (2.9 μL, 0.028 mmol) was added by syringe to
the sample. Nitrogen was removed by the freezeÀpumpÀthaw degassing
(2Â) method. The tube was then heated at 120 °C for 18 h, during which
time the solution colored changed from a clear orange to a opaque dark
green. When the solution or solid of 5 turns red, it has decomposed. 1H
NMR (400 MHz, THF-d8, 25 °C): δ 7.8À7.0 (br m, 25H), 6.86 (t, J =
7.6 Hz, 2H), 6.58 (t, J = Hz, 1H), 2.25 (m, 2H), 2.14 (m, 2H), 1.51 (m,
2H), 1.33 (m, 2H), 1.21 (m, 12H), 1.10 (m, 12H). 13C NMR (100 MHz,
THF-d8, 25 °C): δ 189.8 (d, J = 7.5 Hz), 162.8 (s), 149.59 (s), 143À121
(aryl), 27.52À19.48 (dippe).
(18) Chan, A. S. C.; Shieh, H.-S.; Hill, J. R. J. Organomet. Chem. 1985,
279, 171.
(19) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T. J. Am.
Chem. Soc. 1992, 114, 8863.
(20) Hoberg, H.; G€otz, V.; Kr€uger, C. J. Organomet. Chem. 1979,
169, 219.
(21) Summerford, C.; Wade, K. J. Chem. Soc. A 1970, 2010.
(22) Albano, P.; Aresta, M.; Manassero, M. Inorg. Chem. 1980,
19, 1069.
(23) Cloke, F. G. N.; Gibson, V. C.; Green, M. L. H. J. Chem. Soc.,
Dalton Trans. 1988, 2227.
(24) Swartz, B. D.; Ates-in, T. A.; Grochowski, M. R.; Oster, S. S.;
Brennessel, W. W.; Jones, W. D. Inorg. Chim. Acta 2010, 363, 517.
(25) Oxley, P.; Partridge, M. W.; Robson, T. D.; Short, W. F. J. Chem.
Soc. 1946, 763.
’ ASSOCIATED CONTENT
(26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara,
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Supporting Information. 31P and 13C NMR spectra for
S
b
13
5À C, tables of crystallographic data for 4, and DFT calcula-
tions of structure 2. This material is available free of charge via the
5609
dx.doi.org/10.1021/om200342f |Organometallics 2011, 30, 5604–5610