LETTER
[2+2+2] Cycloaddition of Enynes and Arynes
1991
higher-energy path
In the case of enyne 1j we wanted to evaluate the effect of
the distance of the stereocenter from olefin, however, it
was found that cyclization to form the desired adduct did
not take place, rather, cyclization took place with two
aryne units and the alkyne. This maybe due to a slower ox-
idative cyclization of the enyne due to the greater entropic
barrier, vide infra. In the case of enyne 1k, cyclization
proceeded in excellent yield but poor stereoselectivity
was observed (Table 2, entry 6).
Me
Me
NiLn
Ph
Ph
NiLn
H
H
H
H
Me
Ph
+
Me
NiLn
H
Me
NiLn
H
Ph
NiLn
Ph
In order to explain the formation of the observed products
we propose a mechanism involving initial coordination of
the enyne to give a nickel(0) complex such as 1 then oxi-
dative cyclization can take place to give metallacycle 2.
At this point coordination of the aryne intermediate and
insertion into one of the carbon–metal bonds can take
place generating 4 which reductively eliminates to pro-
vide the final product (Scheme 1).
H
lower-energy path
H
Scheme 2 Stereochemical model
readily available starting materials. Furthermore, the
products posses an olefin which can be a useful synthetic
handle for further transformations. Future work will focus
on improving this useful reaction and exploring other
strategies for stereoselective synthesis using arynes.
R1
R1
X
R2
Supporting Information for this article is available online at
X
H
R2
NiLn
Acknowledgment
R1
We thank NSERC (Canada), Merck-Frosst (IRC), and the Univer-
sity of Toronto for support of these studies. D. A. C. would like to
thank Dr. Robert Webster for providing inspiration for this study.
R1
X
X
NiLn
NiLn
H
X
R2
1
R2
4
References
R1
NiLn
(1) (a) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701.
(b) Sanz, R. Org. Prep. Proced. Int. 2008, 40, 215.
(c) Dyke, A. M.; Hester, A. J.; Lloyd-Jones, G. C. Synthesis
2006, 4093. (d) Bennett, M. A.; Schwemlein, H. P. Angew.
Chem. Int. Ed. 1989, 28, 1296.
R1
NiLn
H
R2
X
3
(2) (a) Recent reports of metal-catalyzed reactions involving
arynes: Morishita, T.; Yoshida, H.; Ohshita, J. Chem.
Commun. 2010, 46, 640. (b) Huang, X.; Sha, F.; Tong, J.
Adv. Synth. Catal. 2010, 352, 379. (c) Cant, A. A.; Roberts,
L.; Greaney, M. F. Chem. Commun. 2010, 46, 8671. (d) Li,
R.-J.; Pi, S.-F.; Liang, Y.; Wang, Z.-Q.; Song, R.-J.; Chen,
G.-X.; Li, J.-H. Chem. Commun. 2010, 46, 8183. (e) Pi,
S.-F.; Yang, X.-H.; Huang, X.-C.; Liang, Y.; Yang, G.-N.;
Zhang, X.-H.; Li, J.-H. J. Org. Chem. 2010, 75, 3484.
(f) Jeganmohan, M.; Bhuvaneswari, S.; Cheng, C.-H.
Angew. Chem. Int. Ed. 2009, 48, 391. (g) Yoshida, H.;
Morishita, T.; Nakata, H.; Ohshita, J. Org. Lett. 2009, 11,
373. (h) Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem. Int.
Ed. 2009, 48, 572. (i) Liu, Y.-L.; Liang, Y.; Pi, S.-F.;
Huang, X.-C.; Li, J.-H. J. Org. Chem. 2009, 74, 3199.
(j) Pi, S.-F.; Tang, B.-X.; Li, J.-H.; Liu, Y.-L.; Liang, Y.
Org. Lett. 2009, 11, 2309. (k) Worlikar, S. A.; Larock, R. C.
Org. Lett. 2009, 11, 2413.
2
H
R2
CsF
TMS
TfO
TMSF + CsOTf
Scheme 1 Proposed mechanism
The stereochemistry is set at the stage of intermediate 2.
This trans stereochemistry is common in the metal-
catalyzed cycloisomerization of 1,6-enynes and can be ra-
tionalized by the model illustrated in Scheme 2.6 Com-
plexation yields two diastereomeric complexes which can
go on to cyclize in an irreversible step. The transition state
leading to the trans product minimizes 1,3-allylic strain
making the trans product favored.
(3) (a) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.;
Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028.
In conclusion we have demonstrated the feasibility of the
metal-catalyzed [2+2+2] reaction of an enyne with an
aryne intermediate and have shown that excellent stereo-
selectivities can be obtained. It is noteworthy that com-
plex polycyclic scaffolds can be accessed from simple and
(b) Webster, R.; Lautens, M. Org. Lett. 2009, 11, 4688.
(4) (a) Iwayama, T.; Sato, Y. Heterocycles 2010, 80, 917.
(b) Qiu, Z.; Xie, Z. Angew. Chem. Int. Ed. 2009, 48, 5729.
(c) Saito, N.; Shiotani, K.; Kinbara, A.; Sato, Y. Chem.
Commun. 2009, 4284. (d) Hsieh, J.-C.; Cheng, C.-H. Chem.
Commun. 2008, 2992. (e) Sato, Y.; Tamura, T.; Kinbara, A.;
Mori, M. Adv. Synth. Catal. 2007, 349, 647. (f) Quintana,
Synlett 2011, No. 14, 1987–1992 © Thieme Stuttgart · New York