312
M. Shekouhy, A. Hasaninejad / Ultrasonics Sonochemistry 19 (2012) 307–313
some biologically active 1,2,5,6-tetrahydropyrimidines, J. Comb. Chem.
(2007) 797–803.
[6] J.T. Li, W.Z. Xu, L.C. Yang, T.S. Li, One-pot synthesis of 2-amino-4-aryl-3-
carbalkoxy- 7,7-dimethyl-5,6,7,8-tetrahydrobenzo[b]pyran derivatives
9
[26] T. Ogawa, J. Watanabe, Y. Oshima, Catalyst-free synthesis of
polyorganosiloxanes by high temperature & pressure water, Supercrit. Fluids
45 (45) (2008) 80–87.
[27] A. Hasaninejad, A. Zare, M. Shekouhy, J. Ameri-Rad, Catalyst-free one-pot four
component synthesis of polysubstituted imidazoles in neutral ionic liquid 1-
butyl-3-methylimidazolium bromide, J. Comb. Chem. 12 (2010) 844–849.
[28] [a] F.W. Lichtenthaler, Unsaturated O- and N-Heterocycles from carbohydrate
feedstocks, Acc. Chem. Res. 35 (2002) 728–737;
catalyzed by KF/basic Al2 O3 under ultrasound irradiation, Synth. Commun.
34 (2004) 4565–4571.
[7] T.S. Jin, J.S. Zhang, A.Q. Wang, T.S. Li, Ultrasound-assisted synthesis of 1,8-
dioxoocta hydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic
acid in aqueous media, Ultrason. Sonochem. 13 (2006) 220–224.
[8] K.P. Guzen, R. Cella, H.A. Stefani, Ultrasound enhanced synthesis of 1,5-
benzodiazepinic heterocyclic rings, Tetrahedron Lett. 47 (2006) 8133–8136.
[9] S. Tu, L. Cao, Y. Zhang, Q. Shao, D. Zhou, C. Li, An efficient synthesis of
pyrido[2,3-d]pyrimidine derivatives and related compounds under ultrasound
irradiation without catalyst, Ultrason. Sonochem. 15 (2008) 217–221.
[10] J.T. Li, J.F. Han, J.H. Yang, T.S. Li, An efficient synthesis of 3,4-dihydropyrimidin-
2-ones catalyzed by NH2SO3H under ultrasound irradiation, Ultrason.
Sonochem. 10 (2003) 119–121.
[11] N.M.A. El-Rahman, T.S. Saleh, M.F. Mady, Ultrasound assisted synthesis of
some new 1,3,4-thiadiazole and bi(1,3,4-thiadiazole) derivatives incorporating
pyrazolone moiety, Ultrason. Sonochem. 16 (2009) 70–74.
[12] H. Zang, Y. Zhang, Y. Zhang, B.W. Cheng, An efficient ultrasound promoted
method for the one-pot synthesis of 7,10,11,12-tetrahydrobenzo[c]acridin-
8(9H)-one derivatives, Ultrason. Sonochem. 17 (2010) 495–499.
[13] D. Venzke, A.F.C. Flores, F.H. Quina, L. Pizzuti, C.M.P. Pereira, Ultrasound
promoted greener synthesis of 2-(3,5-diaryl-4,5-dihydro-1H-pyrazol-1-yl)-4-
phenylthiazoles, Ultrason. Sonochem 18 (2011) 370–374.
(b) V.P. Litvinov, Multi-component cascade heterocyclisation as a promising
route to targeted synthesis of polyfunctional pyridines, Russ. Chem. Rev. 72
(72) (2003) 69–85.
[29] E. Mosaddegh, A. Hassankhani, A rapid, one-pot, four-component route to 2H-
indazolo[2,1-b]phthalazine-triones, Tetrahedron Lett. 52 (2011) 488–490.
[30] T. Sheradsky, R. Moshenberg, Bridgehead hydrazines. 3. Unusual
photorearrangement
of
1,4-diphenylpyridazino[1,2-b]phthalazine-6,11-
dione, J. Org. Chem. 51 (1986) 3123–3125.
[31] Y.K. Ramtohup, M.N.G. James, J.C. Vederas, Synthesis and evaluation of keto-
glutamine analogues as inhibitors of hepatitis A virus 3C proteinase, J. Org.
Chem. 67 (2002) 3169–3178.
[32] A. Csampai, K. Kormendy, F. Ruff, Highly regioselective ring opening of
epoxides and aziridines using (bromodimethyl)sulfonium bromide,
Tetrahedron 47 (1991) 4457–4460.
[33] L.P. Liu, J.M. Lu, M. Shi, PhI(OAc)2-Mediated novel 1,3-dipolar cycloaddition of
methylenecyclopropanes (MCPs) vinylidenecyclopropanes (VCPs) and
methylenecyclobutane (MCB) with phthalhydrazide, Org. Lett.
1303–1306.
9 (2007)
[14] H. Bienayme, C. Hulme, G. Oddon, P. Schmitt, Maximizing synthetic efficiency:
multi-component transformations lead the way, Chem. Eur. J. 6 (2000) 3321–
3329.
[34] [a] M. Sayyafi, M. Seyyedhamzeh, H.R. Khavasi, A. Bazgir, One-pot, three-
component route to 2H-indazolo[2,1-b]phthalazine-triones, Tetrahedron 64
(2008) 2375–2378;
[15] M.J. Earle, S.P. Katdare, K.R. Seddon, Paradigm confirmed: the first use of ionic
liquids to dramatically influence the outcome of chemical reactions, Org. Lett.
6 (2004) 707–710.
(b) J.M. Khurana, D. Magoo, Efficient one-pot syntheses of 2H-indazolo[2,1-b]
phthalazine-triones by catalytic H2SO4 in water-ethanol or ionic liquid,
Tetrahedron Lett. 50 (2009) 7300–7303;
[16] [a] M.J. Earle, P.B. McCormac, K.R. Seddon, Diels–Alder reactions in ionic
(c) R. Fazaeli, H. Aliyan, N. Fazaeli, Heteropoly Acid in ionic liquid – an efficient
catalyst for the preparation of 2H-Indazolo[2,1-b]phthalazine-triones, The
Open Cat. J. 3 (2010) 14–16.
liquids.
A safe recyclable alternative to lithium perchlorate-diethyl ether
mixtures, Green Chem. 1 (1999) 23–25;
(b) R. Vijayaraghavan, D.R. MacFarlane, Charge transfer polymerization in
ionic liquids, Aust. J. Chem. 57 (2004) 129–133;
[35] [a] H. Shaterian, F. Rigi, Starch sulfate as an efficient and biodegradable
polymer catalyst for one-pot, four-component reaction of 2H-indazolo[2,1-
b]phthalazine-triones, Starch 00 (2011) 1–7;
(c) J.N. Rosa, C.A.M. Afonso, A.G. Santos, Ionic liquids as a recyclable reaction
medium for the Baylis–Hillman reaction, Tetrahedron 57 (2001) 4189–4193.
[17] Y. Chauvin, L. Mussmann, H. Olivier, A novel class of versatile solvents for two-
phase catalysis: Hydrogenation, isomerization, and hydroformylation of
alkenes catalyzed by rhodium complexes in liquid 1,3-aialkylimidazolium
salts, Angew. Chem., Int. Ed. Engl. 34 (1995) 2698–2700.
(b) E. Mosaddegh, A. Hassankhani, A rapid, one-pot, four-component route to
2H-indazolo[2,1-b]-phthalazine-triones, Tetrahedron Lett. 52 (2011) 488–490;
(c) H. Shaterian, A. Hosseinian, M. Ghashang, Reusable silica supported poly
phosphoric acid catalyzed three-component synthesis of 2H-indazolo[2,1-
b]phthalazine-trione derivatives, Arkivoc ii (2009) 59–67.
[18] [a] M.A. Klingshirn, R.D. Rogers, K.H. Shaughnessy, Palladium-catalyzed
hydroesterification of styrene derivatives in the presence of ionic liquids, J.
Organomet. Chem. 690 (2005) 3620–3626;
(b) E. Mizushima, T. Hayashi, M. Tanaka, Palladium-catalysed carbonylation of
aryl halides in ionic liquid media: high catalyst stability and significant rate-
enhancement in alkoxycarbonylation, Green Chem. 3 (2001) 76–79.
[19] [a] J.S. Yadav, B.V.S. Reddy, G. Baishya, K.V. Reddy, A.V. Narsaiah, Conjugate
[36] [a] P.T. Anastas, J.C. Warner, In Green Chemistry: Theory and Practice, Oxford
University Press, Oxford, UK, 1998;
(b) P.T. Anastas, T. Williamson, In Green Chemistry: Frontiers in Benign
Chemical Synthesis and Process, Oxford University Press, Oxford, UK, 1998.
[37] [a] A. Hasaninejad, A. Zare, M. Shekouhy, N. Golzar, Efficient synthesis of 4,4a-
(arylmethylene)-bis(3-methyl-1-phenylpyrazol-5-ol) derivatives in PEG-400
under catalyst-free conditions, Org. Prep. Proc. Int. 43 (2011) 131–137;
(b) A. Zare, A. Parhami, A.R. Moosavi-Zare, A. Hasaninejad, A. Khalafi-Nezhad,
M.H. Beyzavi, A catalyst-free protocol for the green and efficient condensation
of indoles with aldehydes in ionic liquids, Can. J. Chem. 87 (2009) 416–421.
[38] J. Dupont, C.S. Consorti, P.A.Z. Suarez, R.F. de Souza, Preparation of 1-butyl-3-
methyl imidazolium-based room temperature ionic liquids, Org. Synth. Coll.
10 (2004) 184–187.
addition of indoles to a,b-unsaturated ketones using Cu(OTf)2 immobilized in
ionic liquids, Tetrahedron 61 (2005) 9541–9544;
(b) M. Johansson, A.A. Linden, J.E. Baeckvall, Osmium-catalyzed
dihydroxylation of alkenes by H2O2 in room temperature ionic liquid co-
catalyzed by VO(acac)2 or MeReO3, J. Organomet. Chem. 690 (2005) 3614–
3619;
(c) A. Serbanovic, L.C. Branco, M. Nunes da Ponte, C.A.M. Afonso, Osmium
catalyzed asymmetric dihydroxylation of methyl trans-cinnamate in ionic
liquids followed by supercritical CO2 product recovery, J. Organomet. Chem.
690 (2005) 3600–3608.
[39] [a] J.L. Anderson, J. Ding, T. Welton, D.W. Armstrong, Characterizing ionic
liquids on the basis of multiple solvation interactions, J. Am. Chem. Soc. 124
(2002) 14247–14254;
(b) Q. Liu, M.H.A. Jonssen, F. Rantwijk, R.A. Sheldon, Room-temperature ionic
liquids that dissolve carbohydrates in high concentrations, Green Chem. 7
(2005) 39–42;
(c) L. Crowhurst, P.R. Mawdsley, J.M. Perez-Arlandis, P.A. Salter, T. Welton,
Solvent–solute interactions in ionic liquids, Phys. Chem. Chem. Phys. 5 (2003)
2790–2794.
[20] [a] (M. Picquet, S. Stutzmann, I. Tkatchenko, I. Tommasi, J. Zimmermann, P.
Wasserscheid, Selective palladium-catalysed dimerisation of methyl acrylate
in ionic liquids: towards a continuous process, Green Chem. 5 (2003) 153–162;
(b) S.A. Forsyth, H.Q.N. Gunaratne, C. Hardacre, A. McKeown, D.W. Rooney,
K.R. Seddon, Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-
Valley fragrance {b-Lilial; 3-(4-t-butylphenyl)-2-methylpropanal}, J. Mol.
Catal. A: Chem. 231 (2005) 61–66;
(c) M.T. Reetz, W. Wiesenhoefer, G. Francio, W. Leitner, Biocatalysis in ionic
liquids: batchwise and continuous flow processes using supercritical carbon
dioxide as the mobile phase, Chem. Commun. (2002) 992–993.
[21] J.J. Schneider, N.I. Maksim, J. Engstler, R. Joshi, R. Schierholz, R. Feile, Catalyst
free growth of a carbon nanotube-alumina composite structure, Inorg. Chim.
Acta 361 (2008) 1770–1778.
[40] M.L. Deb, P.J. Bhuyan, An efficient and clean synthesis of bis(indolyl)methanes
in a protic solvent at room temperature, Tetrahedron Lett. 47 (2006) 1441–
1443.
[41] P.R. Gogate, S. Mujumdar, A.B. Pandit, Sonochemical reactors for waste water
treatment: comparison using formic acid degradation as a model reaction,
Adv. Environ. Res. 7 (2003) 283–299.
[42] T.J. Mason, Sonochemistry sonoprocessing: the link the trends and (pobably)
the future, Ultrason. Sonochem. 10 (2003) 175–179.
[22] T.M. Potewar, S.A. Ingale, K.V. Srinivasan, Catalyst-free efficient synthesis of 2-
aminothiazoles in water at ambient temperature, Tetrahedron 64 (2008)
5019–5022.
[43] T.J. Mason, L. Paniwnyk, J.P. Lorimer, The uses of ultrasound in food
technology, Ultrason. Sonochem. 3 (1996) S253–S260.
[44] M.H. Entezari, A. Asghari, F. Hadizadeh, Sono-synthesis of imidazolidine-2-
[23] J.J. Shrikhande, M.B. Gawande, R.V. Jayaram,
A
catalyst-free N-
thione as a base compound of some pharmaceutical products, Ultrason.
benzyloxycarbonylation of amines in aqueous micellar media at room
temperature, Tetrahedron Lett. 49 (2008) 4799–4803.
[24] X. Li, W. Eli, G. Li, Solvent-free synthesis of benzoic esters and benzyl esters in
novel Brønsted acidic ionic liquids under microwave irradiation, Catal.
Commun. 9 (2008) 2264–2268.
[25] Y. Wei, H. Ren, J. Wang, Solvent- and catalyst-free gem-bisallylation of
carboxylic acid derivatives with allylzinc bromide, Tetrahedron Lett. 49 (2008)
5697–5699.
Sonochem. 15 (2008) 119–123.
[45] A. Shaabani, A.H. Rezayan, A. Rahmati, M. Sharifi, Ultrasound-accelerated
synthesis of 1,4-dihydropyridines in an ionic liquid, Monatsh Chem. 137
(2006) 77–81.
[46] T.J. Manson, Ultrasound in synthetic organic chemistry, Chem. Soc. Rev. 26
(1997) 443–451.
[47] P. Cintas, J.L. Luche, Green chemistry. The sonochemical approach, Green
Chem. 1 (1999) 115–125.