LETTER
First Total Synthesis of the Alkaloids Clausine Q and Clausine R
2057
Taglialatela-Scafati, O., Eds.; Wiley-VCH: Weinheim,
2008, 475. (e) Knölker, H.-J. Chem. Lett. 2009, 38, 8.
(3) Knölker, H.-J.; Reddy, K. R. In The Alkaloids, Vol. 65;
Cordell, G. A., Ed.; Academic Press: Amsterdam, 2008, 1.
(4) (a) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128,
16496. (b) Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii,
N.; Ohno, H. Chem. Commun. 2007, 4516. (c) Liégault, B.;
Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J. Org.
Chem. 2008, 73, 5022.
(5) Li, W.-S.; McChesney, J. D.; El-Feraly, F. S.
Phytochemistry 1991, 30, 343.
(6) Wu, T.-S.; Huang, S.-C.; Wu, P.-L.; Kuoh, C.-S.
Phytochemistry 1999, 52, 523.
COOMe
a
COOMe
+
RO
Br
H2N
RO
N
H
OMe
OMe
5 R = Si(i-Pr)3
6
7
COOMe
c,d
CHO
OMe
b
RO
RO
N
H
8
N
H
9
OMe
(7) Forke, R.; Krahl, M. P.; Krause, T.; Schlechtingen, G.;
Knölker, H.-J. Synlett 2007, 268.
(8) Krahl, M. P.; Jäger, A.; Krause, T.; Knölker, H.-J. Org.
f
e
Biomol. Chem. 2006, 4, 3215.
CHO
OMe
COOMe
(9) Börger, C.; Knölker, H.-J. Synlett 2008, 1698.
(10) Schmidt, M.; Knölker, H.-J. Synlett 2009, 2421.
(11) Forke, R.; Krahl, M. P.; Däbritz, F.; Jäger, A.; Knölker,
H.-J. Synlett 2008, 1870.
(12) Kataeva, O.; Krahl, M. P.; Knölker, H.-J. Org. Biomol.
Chem. 2005, 3, 3099.
HO
HO
N
H
N
H
4
OH
3
(13) (a) Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046.
(b) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002,
219, 131.
Scheme 2 Synthesis of clausine Q (3) and clausine R (4). Reagents
and conditions: (a) 5 (1.2 equiv), Pd(OAc)2 (5 mol%), S-Phos (10
mol%), Cs2CO3 (1.5 equiv), toluene, 100 °C, 19.5 h (94%); (b)
Pd(OAc)2 (5 mol%), K2CO3 (10 mol%), PivOH, 130 °C, air, 25.5 h
(85%); (c) DIBAL-H (2.3 equiv), Et2O, –78 °C, 2 h (92%); (d) MnO2
(12 equiv), CH2Cl2, r.t., 7.5 h (95%); (e) TBAF (1.5 equiv), THF,
–15 °C to r.t., 10 min (99%); (f) BBr3 (10 equiv), CH2Cl2, –78 °C to
–30 °C, 22 h (72%).
(14) (a) Åkermark, B.; Eberson, L.; Jonsson, E.; Petersson, E.
J. Org. Chem. 1975, 40, 1365. (b) Miller, R. B.; Moock, T.
Tetrahedron Lett. 1980, 21, 3319. (c) Furukawa, H.; Ito, C.;
Yogo, M.; Wu, T.-S. Chem. Pharm. Bull. 1986, 34, 2672.
(d) Knölker, H.-J.; O’Sullivan, N. Tetrahedron 1994, 50,
10893. (e) Knölker, H.-J.; Fröhner, W.; Reddy, K. R.
Synthesis 2002, 557. (f) Knölker, H.-J.; Reddy, K. R.
Heterocycles 2003, 60, 1049.
with gradient elution (pentane–ethyl acetate, 3:1 to 1:1).
Treatment of compound 8 with boron tribromide at low
temperature (–78 °C to –30 °C) leads to cleavage of the
triisopropylsilyl and the methyl ether and generates di-
rectly clausine R (4) in 72% yield. Thus, starting from the
commercially available compounds 5 and 6, clausine Q
(3) has been obtained in five steps and 74% overall yield
and clausine R (4) in three steps and 58% overall yield.
The spectroscopic data of both compounds are in full
agreement with those reported by Wu et al. for the natural
products.6 However, the melting points we found for
clausine Q (3) and clausine R (4) are more than 100 °C
higher than those reported.18
(15) Experimental Procedure for the Palladium(II)-
Catalyzed Oxidative Cyclization of 7: The N,N-
diarylamine 7 (301 mg, 0.7 mmol), K2CO3 (9.8 mg, 0.07
mmol), and pivalic acid (680 mg) were heated under air at
130 °C. Freshly recrystallized Pd(OAc)2 (8.0 mg, 0.036
mmol) was added and the reaction mixture was heated under
air at 130 °C with vigorous stirring. After cooling to r.t., the
mixture was taken up in EtOAc and washed first with a sat.
solution of K2CO3 and then with a sat. solution of NaCl. The
aqueous layers were subsequently extracted with EtOAc.
The combined organic layers were dried over Na2SO4 and
the solvent was removed in vacuum. Purification of the
crude product by flash chromatography (pentane–CH2Cl2–
EtOAc, gradient elution from 55:5:1 to 25:5:1) on silica
gel provided methyl 7-triisopropylsilyloxy-1-methoxy-
carbazole-3-carboxylate (8; yield: 255 mg, 85%) as colorless
crystals (mp 164–165 °C). UV (MeOH): lmax = 216, 239,
250, 278 (sh), 283, 305 (sh), 318, 330 nm. IR (ATR): 3351,
2941, 2864, 1685, 1609, 1590, 1504, 1457, 1430, 1396,
1346, 1258, 1218, 1163, 1107, 1035, 997, 968, 921, 881,
851, 839, 823, 800, 754, 707, 672, 623 cm–1. 1H NMR (500
MHz, CDCl3): d = 1.13 (d, J = 7.4 Hz, 18 H), 1.31 (sept, J =
7.4 Hz, 3 H), 3.97 (s, 3 H), 4.04 (s, 3 H), 6.86 (dd, J = 8.5,
2.1 Hz, 1 H), 6.96 (d, J = 2.1 Hz, 1 H), 7.53 (d, J = 1.2 Hz, 1
H), 7.89 (d, J = 8.5 Hz, 1 H), 8.31 (br s, 1 H), 8.36 (br s, 1
H). 13C NMR and DEPT (125 MHz, CDCl3): d = 12.71 (3 ×
CH), 17.95 (6 × Me), 51.98 (Me), 55.72 (Me), 101.84 (CH),
105.93 (CH), 114.11 (CH), 115.47 (CH), 117.91 (C), 121.17
(CH), 121.89 (C), 123.85 (C), 132.85 (C), 140.79 (C),
144.84 (C), 155.58 (C), 168.04 (C=O). MS (EI): m/z (%) =
427 (100) [M+], 396 (8), 385 (21), 384 (71), 356 (23), 352
(42), 328 (17), 314 (15), 296 (9), 282 (19). Anal. Calcd for
In conclusion, we have developed a highly efficient syn-
thesis of 1,7-dioxygenated tricyclic carbazole alkaloids
using a sequence of palladium(0)-catalyzed amination
and palladium(II)-catalyzed oxidative cyclization by dou-
ble C–H bond activation. The method has been applied to
the first total synthesis of clausine Q and clausine R which
may be of interest due to their potential anti-TB activity.19
References and Notes
(1) Part 94: Gruner, K. K.; Hopfmann, T.; Matsumoto, K.; Jäger,
A.; Katsuki, T.; Knölker, H.-J. Org. Biomol. Chem. 2011, 9,
2057.
(2) For reviews, see: (a) Knölker, H.-J.; Reddy, K. R. Chem.
Rev. 2002, 102, 4303. (b) Knölker, H.-J. Curr. Org. Synth.
2004, 1, 309. (c) Knölker, H.-J. Top. Curr. Chem. 2005,
244, 115. (d) Knölker, H.-J. In Modern Alkaloids:
Structure, Isolation, Synthesis and Biology; Fattorusso, E.;
Synlett 2011, No. 14, 2056–2058 © Thieme Stuttgart · New York