˚
As expected, the M1–O1 distance in 1 at 1.5786(16) A and the
3062 (vw), 3030 (vw), 1602 (vw), 1496 (m), 1454 (m), 1398 (vw), 1248 (w),
1194 (vw), 1143 (vw), 1087 (m), 1071 (m), 1043 (w), 1012 (s), 1000 (s), 979
(s), 916 (m), 854 (m,br), 779 (m), 694 (s).
˚
corresponding trans M1–O7 at 2.4392(15) A are the shortest and
the longest, respectively, out of the three complexes in Table 1.
The distortion from perfect cubane cores is evident in that there
are much larger distances observed for M1 ◊ ◊ ◊ M3 compared to
the M1 ◊ ◊ ◊ M2 interactions; see Table 1. The distance labeled as
O2 ◊ ◊ ◊ O5 also varies among the three cubes with that for 1 being
¶ Crystal data for 1: C56H56O16P4V4·4(H2O), M = 1376.65, tetragonal, a =
3
˚
˚
˚
˚
22.306(4) A, b = 22.306(4) A, c = 12.824(2) A, V = 6380.7(19) A , T =
100(2)K, space group I41/a, Z = 4, m = 0.738 mm-1, 22 239 reflections
measured, 4828 independent reflections (Rint = 0.0504). R1 = 0.0397 (I >
2s(I)). wR(F2) = 0.0899 (I > 2s(I)). R1 = 0.0691 (all data). wR(F2) = 0.102
(all data). Crystal data for 2: C56H56O16P4W4·3(C4H8O), M = 2060.56,
˚
˚
˚
˚
the shortest at 2.419(2) A, compared to those in 3 and 2 at 2.7560(2)
and 2.7970(4) A, respectively. Somewhat related is the fact that the
tetragonal, a = 22.771(4) A, b = 22.771(4) A, c = 13.107(2) A, V = 6796(2)
3
-1
˚
A , T = 100(2)K, space group I41/a, Z = 4, m = 6.915 mm , 17 299
˚
reflections measured, 5083 independent reflections (Rint = 0.0225). R1
=
O1–M1–O7 angle for 1 at 177.40(6)◦ is very nearly linear whereas
those for 2 and 3 at 168.99(7) and 170.36(8)◦, respectively, deviate
more. These effects may be attributed to the repulsive effects of
the metal to metal atom interaction or more simply the fact that
as the metal atoms form bonds, the oxygen atoms move apart as
a consequence. This also results in the M1–O2–M2 and O2–M1–O5
angles being the largest and smallest, respectively, for 1 compared
to 2 and 3; see Table 1. The last four rows of data in Table 1
illustrate the fact that the geometry at each metal center can be
considered as distorted square pyramidal, with the metal centers
being raised out of the plane defined by the four pseudo-equatorial
oxygen atoms. The listings for the corresponding distances reveal
that those for the oxygen to metal atoms are significantly shorter
in 1 compared to 2 and 3 with the exception of the bond trans to
the multiply bonded oxo ligand. The O3¢ ◊ ◊ ◊ O4 listing in Table 1
illustrates the accommodating nature of the phosphinate bridge
0.0189 (I > 2s(I)). wR(F2) = 0.0425 (I > 2s(I)). R1 = 0.0241 (all data).
wR(F2) = 0.0457 (all data).
1 R. Hernandez-Molina and A. G. Sykes, J. Chem. Soc., Dalton Trans.,
1999, 3137–3148.
2 (a) R. Hernandez-Molina and A. G. Sykes, Coord. Chem. Rev., 1999,
187, 291–302; (b) R. H. Holm, Adv. Inorg. Chem., 1992, 38, 1–71; (c) R.
Llusar and S. Uriel, Eur. J. Inorg. Chem., 2003, 1271–1290.
3 K. C. K. Swamy, R. O. Day and R. R. Holmes, J. Am. Chem. Soc.,
1987, 109, 5546–5548.
4 (a) G. Guerrero, M. Mehring, P. Hubert Mutin, F. Dahan and A. Vioux,
J. Chem. Soc., Dalton Trans., 1999, 1537–1538; (b) D. L. Thorn and R.
L. Harlow, Inorg. Chem., 1992, 31, 3917–3923.
5 G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pryadun,
J. E. Sheats, L. Spiccia and G. F. Swiegers, Acc. Chem. Res., 2009, 42,
1935–1943.
6 J. Barber, Inorg. Chem., 2008, 47, 1700–1710.
7 (a) G. I. Chilas, H. N. Miras, M. J. Manos, J. D. Woollins, A. M. Z.
Slawin, M. Stylianou, A. D. Keramidas and T. A. Kabanos, Pure Appl.
Chem., 2005, 77, 1529–1538; (b) M. J. Manos, H. N. Miras, V. Tangoulis,
J. D. Woollins, A. M. Z. Slawin and T. A. Kabanos, Angew. Chem., Int.
Ed., 2003, 42, 425–427; (c) H. N. Miras, R. Raptis, P. Baran, N. Lalioti,
A. Harrison and T. A. Kabanos, C. R. Chim., 2005, 8, 957–962; (d) H.
N. Miras, R. G. Raptis, N. Lalioti, M. P. Sigalas, P. Baran and T. A.
Kabanos, Chem.–Eur. J., 2005, 11, 2295–2306.
˚
˚
ranging from 2.561(2) A in 1 to 2.5871(3) A in 3.
In summary, we detail the synthetic routes leading to vanadium
and tungsten tetrameric complexes of the stoichiometry [M4(m3-
O)4]12+. While complexes containing this core were previously
reported for vanadium, albeit in the form of extended clusters, this
is the first report for a tungsten(V) cluster with this core geometry.
8 M. D. Medrano, H. T. Evans, Jr., H.-R. Wenk and D. Z. Piper, Am.
Mineral., 1998, 83, 889–895.
9 (a) G. A. Farnum and R. L. LaDuca, Acta Crystallogr., Sect. E: Struct.
Rep. Online, 2008, 64, m1602; (b) F.-N. Shi, Filipe A. A. Paz, J. Rocha,
J. Klinowski and T. Trindade, Eur. J. Inorg. Chem., 2004, 3031–3037.
10 X. Ma, Z. Yang, C. Schulzke, M. Noltemeyer and H.-G. Schmidt, Inorg.
Chim. Acta, 2009, 362, 5275–5277.
Notes and references
‡ Synthesis of 1: V3(m3-O)O2)(m2-O2P(Bn)2)6(H2O)19 (0.0500 g, 0.0295
mmol) was dissolved in 10 mL of CH2Cl2 at 20 ◦C. To this light blue-
11 Y. Hayashi, F. Mu¨ller, Y. Lin, S. M. Miller, O. P. Anderson and R. G.
Finke, J. Am. Chem. Soc., 1997, 119, 11401–11407.
t
green solution was added BuOOH (0.016 mL of 5.5 M) in decane upon
which the solution turned dark purple. About 5 drops of de-ionized H2O
were then added. After 3 h of stirring, the solution had turned reddish-
orange in color. The solvent was reduced to about 1 mL, kept at -20 ◦C
overnight and then filtered. To the filtrate was added 30 mL of hexane
and this mixture was kept at -20 ◦C for 2 d resulting in an orange
crystalline precipitate, which was then filtered off, rinsed with hexane and
then dried under a vacuum to give 0.0050 g of 1 (0.0038 mmol, 17.2%
yield with respect to V3(m3-O)O2)(m2-O2P(Bn)2)6(H2O)). Anal. (Galbraith
Laboratories, Knoxville, TN) calcd for C56H56V4O16P4: C 51.24, H 4.30.
Found: C 50.84, H 4.58%. 1H NMR (400 MHz, CDCl3): d (ppm) = 2.86
12 K. Nishikawa, K. Kido, J. i. Yoshida, T. Nishioka, I. Kinoshita, B.
K. Breedlove, Y. Hayashi, A. Uehara and K. Isobe, Appl. Organomet.
Chem., 2003, 17, 446–448.
13 V. Artero, A. Proust, P. Herson and P. Gouzerh, Chem.–Eur. J., 2001,
7, 3901.
14 J. Glerup, A. Hazell, K. Michelsen and H. Weihe, Acta Chem. Scand.,
1994, 48, 618–627.
15 (a) R. Hazama, K. Umakoshi, A. Ichimura, S. Ikari, Y. Sasaki and T.
Ito, Bull. Chem. Soc. Jpn., 1995, 68, 456–468; (b) T. A. Budzichowski,
M. H. Chisholm, K. Folting, M. G. Fromhold and W. E. Streib, Inorg.
Chim. Acta, 1995, 235, 339–347; (c) S. Ikari, Y. Sasaki and T. Ito, Inorg.
Chem., 1990, 29, 53–56; (d) S. Khalil and B. Sheldrick, Acta Crystallogr.,
Sect. B: Struct. Crystallogr. Cryst. Chem., 1978, 34, 3751–3753; (e) P.
Schreiber, K. Wieghardt, U. Floerke and H. J. Haupt, Inorg. Chem.,
1988, 27, 2111–2115.
2
2
2
(dd, 8, JHP = 23.3, JHaHb = 14.7 Hz, CHaP), 2.90 (dd, 8, JHP = 27.7,
1
2JHaHb = 14.7 Hz, CHbP), 7.05–7.36 (m, 40, (C6H5CH2)). 31P{ H} NMR
(162 MHz, CDCl3, relative to H3PO4): d (ppm) = 60.6 (s, 1P). UV-vis
spectrum (CH2Cl2) 340 nm. IR (neat, cm-1): 3062 (vw), 3029 (vw), 1602
(vw), 1496 (m), 1454 (m), 1398 (vw), 1245 (vw), 1190 (vw), 1145 (vw), 1101
(m), 1070 (m), 1012 (s), 1000 (s), 990 (s), 914 (vw), 847 (br), 779 (w), 698
(s).
16 A. Jimtaisong, L. Feng, S. Sreehari, C. A. Bayse and R. L. Luck, J.
Cluster Sci., 2008, 19, 181–195.
§ Synthesis of 2: W(CO)6 (0.100 g, 0.284 mmol) and bis(benzyl)phosphinic
acid (0.070 g, 0.283 mmol) were placed in a sealed tube with 6 mL of
a 1 : 1 mixture of ethanol and THF and heated at 120 ◦C for 36 h. The
resulting dark black-blue solution was then cooled to 20 ◦C. After 1 d the
yellow crystals that had formed were filtered off, rinsed with ethanol and
then dried under vacuum to yield 2 (0.018 g, 0.010 mmol, 13.75% yield
based on W(CO)6). Anal. (Galbraith Laboratories, Knoxville, TN) calcd
for C56H56W4O16P4: C 36.47, H 3.06. Found: C 36.63, H 3.23%. 1H NMR
(400 MHz, CDCl3): d (ppm) = 2.93 (dd, 8, 2JHP = 19.5, 2JHaHb = 14.8 Hz,
17 W. Schirmer, U. Floerke and H. J. Haupt, Z. Anorg. Allg. Chem., 1989,
574, 239–255.
18 (a) J. S. Maass, M. Zeller, D. Holmes, C. A. Bayse and R. L. Luck,
J. Cluster Sci., 2011, 22, 193–210; (b) L. Feng, J. S. Maass and R. L.
Luck, Inorg. Chim. Acta, 2011, 373, 85–92.
19 J. S. Maass, Z. Chen, M. Zeller and R. L. Luck, Inorg. Chem., 2011
submitted.
20 R. B. Silverman and R. A. Olofson, Chem. Commun., 1968, 1313–1313.
21 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe,
E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A.
Wood, J. Appl. Crystallogr., 2008, 41, 466–470.
2
2
CHaP), 3.06 (dd, 8, JHP = 14.9, JHaHb = 14.8 Hz, CHbP), 7.04–7.22 (m,
1
40, (C6H5CH2)). 31P{ H} NMR (162 MHz, CH2Cl2, relative to H3PO4): d
(ppm) = 68.4 (s, 1P). UV-vis spectrum (CH2Cl2) 374 nm. IR (neat, cm-1):
11358 | Dalton Trans., 2011, 40, 11356–11358
22 J. E. McGrady, J. Chem. Soc., Dalton Trans., 1999, 1393–1400.
This journal is
The Royal Society of Chemistry 2011
©