10.1002/anie.201804838
Angewandte Chemie International Edition
COMMUNICATION
[11C]CO were reported. Both methods use efficient metal
catalysts for the insertion of the desired tag on series of peptides.
[5]
[6]
a) A. F. Brooks, J. J. Topczewski, N. Ichiishi, M. S. Sanford, P. J. H.
Scott, Chem. Sci. 2014, 5, 4545-4553; b) M. G. Campbell, T. Ritter, Org.
Process Res. Dev. 2014, 18, 474-480.
a) N. J. Taylor, E. Emer, S. Preshlock, M. Schedler, M. Tredwell, S.
Verhoog, J. Mercier, C. Genicot, V. Gouverneur, J. Am. Chem. Soc.
2017, 139, 8267-8276; b) S. Verhoog, C. W. Kee, Y. Wang, T.
Khotavivattana, T. C. Wilson, V. Kersemans, S. Smart, M. Tredwell, B.
G. Davis, V. Gouverneur, J. Am. Chem. Soc. 2018, 140, 1572-1575; c)
E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian,
T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011, 334, 639-
642; d) M. S. McCammant, S. Thompson, A. F. Brooks, S. W. Krska, P.
J. H. Scott, M. S. Sanford, Org. Lett. 2017, 19, 3939-3942.
Scheme 5. Late stage labeling of peptide 5. The position of the azide on the o-
azido aniline precursor is highlighted in bold. [a] Isolated yield; [b]
radiochemical conversion.
[7]
R. Voges, J.R. Heys, T. Moenius, in “Preparation of Compounds
Labeled with Tritium and Carbon-14”, John Wiley & Sons, Ltd, 2009,
393.
[8]
[9]
P. J. H. Scott, Angew. Chem. Int. Ed. 2009, 48, 6001-6004.
B. H. Rotstein, S. H. Liang, J. P. Holland, T. L. Collier, J. M. Hooker, A.
A. Wilson, N. Vasdev, Chem. Commun. 2013, 49, 5621-5629.
Considering the high efficiency and orthogonality of the SAW
sequence, we applied it to a designed peptide sequence bearing
the desired azido-amine group and most of the classical reactive
moieties displayed by amino acids (alcohols, carboxylic acids,
amine, indole). To our delight, we observed a very clean
reaction under the optimized reaction conditions affording the
radiolabeling of 5 with an encouraging 43% yield from [14C]CO2
and 23% radiochemical conversion using [11C]CO2.
[10] Z. Tu, R. H. Mach, Curr. Top. Med. Chem. 2010, 10, 1060-1095.
[11] B. H. Rotstein, S. H. Liang, M. S. Placzek, J. M. Hooker, A. D. Gee, F.
Dollé, A. A. Wilson, N. Vasdev, Chem. Soc. Rev. 2016, 45, 4708-4726.
[12] For recent labeling methods using [11C]CN-, see: a) K. J. Makaravage,
X. Shao, A. F. Brooks, L. Yang, M. S. Sanford, P. J. H. Scott, Org. Lett.
2018, 20, 1530-1533; b) L. Ma, M. S. Placzek, J. M. Hooker, N. Vasdev,
S. H. Liang, Chem. Commun. 2017, 53, 6597-6600; c) H. G. Lee, P. J.
Milner, M. S. Placzek, S. L. Buchwald, J. M. Hooker, J. Am. Chem. Soc.
2015, 137, 648-651.
[13] For recent labeling methods using [11C]CO2, see: a) J. M. Hooker, A. T.
Reibel, S. M. Hill, M. J. Schueller, J. S. Fowler, Angew. Chem. Int. Ed.
2009, 48, 3482-3485; b) P. J. Riss, S. Lu, S. Telu, F. I. Aigbirhio, V. W.
Pike, Angew. Chem. Int. Ed. 2012, 51, 2698-2702; c) A. V. Mossine, A.
F. Brooks, I. M. Jackson, C. A. Quesada, P. Sherman, E. L. Cole, D. J.
Donnelly, P. J. H. Scott, X. Shao, Bioconjugate Chem. 2016, 27, 1382-
1389.
In conclusion, we have shown that a late-stage carbon labeling
Staudinger aza-Wittig reaction can access functionalized
molecules particularly challenging to obtain with conventional
procedures. The advantages of the current method are its
implementation to all isotopes of carbon (11C, 13C, 14C), a simple
and easy to reproduce protocol, a broad substrate scope
showcased by the labeling of drug candidates and a preliminary
insertion of the carbon tag into an unprotected peptide.
[14] a) Y. Bansal, O. Silakari, Bioorg. Med. Chem. 2012, 20, 6208-6236; b)
J. L. Wright, T. F. Gregory, S. R. Kesten, P. A. Boxer, K. A. Serpa, L. T.
Meltzer, L. D. Wise, S. A. Espitia, C. S. Konkoy, E. R. Whittemore, R. M.
Woodward, J. Med. Chem. 2000, 43, 3408-3419; c) J. Weisner, R.
Gontla, L. v. d. Westhuizen, S. Oeck, J. Ketzer, P. Janning, A. Richters,
T. Mühlenberg, Z. Fang, A. Taher, V. Jendrossek, S. C. Pelly, S. Bauer,
W. A. L. v. Otterlo, D. Rauh, Angew. Chem. Int. Ed. 2015, 54, 10313-
10316.
Acknowledgements
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement N°675071. The
authors thank David-Alexandre Buisson and Elodie Marcon for
the excellent analytical support. We thank Dr. Catriona
Wimberley for kind proofreading.
[15] a) N. Awata, O. Satomi, J. Label Compd. Radiopharm 1987, 24, 331-
338; b) R. Labas, F. Sobrio, Y. Bramoullé, A. S. Hérard, M. Guillermier,
P. Hantraye, F. Dollé, L. Barré, J. Label Compd. Radiopharm 2010, 53,
63-67.
[16] S. Kealey, S. M. Husbands, I. Bennacef, A. D. Gee, J. Passchier, J.
Label Compd. Radiopharm 2014, 57, 202-208.
Keywords: Late stage isotopic labeling • Carbon-11 • Carbon-
14 • Heterocycles • Carbon dioxide
[17] It is worth noting that no examples of cyclic ureas were reported with
this method: A. A. Wilson, A. Garcia, S. Houle, O. Sadovski, N. Vasdev,
Chem. Eur. J. 2011, 17, 259-264.
[18] a) E. M. Sletten, C. R. Bertozzi, Acc. Chem. Res. 2011, 44, 666-676; b)
S. S. v. Berkel, M. B. v. Eldijk, J. C. M. v. Hest, Angew. Chem. Int. Ed.
2011, 50, 8806-8827.
[1]
a) E. M. Isin, C. S. Elmore, G. N. Nilsson, R. A. Thompson, L. Weidolf,
Chem. Res.Toxicol. 2012, 25, 532-542; b) N. Penner, L. Xu, C. Prakash,
Chem. Res. Toxicol. 2012, 25, 513-531; c) J. Atzrodt, V. Derdau, W. J.
Kerr, M. Reid, Angew. Chem. Int. Ed. 2018, 57, 1758-1784.
a) P. W. Miller, N. J. Long, R. Vilar, A. D. Gee, Angew. Chem. Int. Ed.
2008, 47, 8998-9033; b) S. M. Ametamey, M. Honer, P. A. Schubiger,
Chem. Rev. 2008, 108, 1501-1516.
[19] E. W. v. Tilburg, A. D. Windhorst, M. v. d. Mey, J. D. M. Herscheid, J.
Label Compd. Radiopharm 2006, 49, 321-330. This report describe that
[2]
[3]
[
11C]phenylisocyanate could be produced by trapping [11C]CO2 in a
solution of phenyltriphenylphosphinimine. The method was applied on
four linear substrates with moderate yelds and may be constrained by
the lack of structurally diverse triphenylphosphinimines.
a) R. Pony Yu, D. Hesk, N. Rivera, I. Pelczer, P. J. Chirik, Nature 2016,
529, 195-199; b) Y. Y. Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R.
Rivera, S. L. Colletti, I. W. Davies, D. W. C. MacMillan, Science 2017,
DOI: 10.1126/science.aap9674; c) G. Pieters, C. Taglang, E. Bonnefille,
T. Gutmann, C. Puente, J. C. Berthet, C. Dugave, B. Chaudret, B.
Rousseau, Angew. Chem. Int. Ed. 2014, 53, 230-234.
[20] a) C. Tang, N. Jiao, J. Am. Chem. Soc. 2012, 134, 18924-18927; b) Y.
Fan, W. Wan, G. Ma, W. Gao, H. Jiang, S. Zhu, J. Hao, Chem.
Commun. 2014, 50, 5733-5736; c) H. Fang, Y. Dou, J. Ge, M. Chhabra,
H. Sun, P. Zhang, Y. Zheng, Q. Zhu, J. Org. Chem. 2017, 82, 11212-
11217.
[4]
J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. Int. Ed. 2018,
57, 3022-3047.
This article is protected by copyright. All rights reserved.