B. Chakraborty, T.K. Paine / Inorganica Chimica Acta 378 (2011) 231–238
237
a one dimensional edge-shared water tape and represent a subunit
of ice structure.
Acknowledgments
We thank the Department of Science and Technology (DST),
Government of India for the financial support. Crystal structure
determination was performed at the DST-funded National Single
Crystal Diffractometer Facility at the Department of Inorganic
Chemistry, IACS. B.C. acknowledges the Council of Scientific and
Industrial Research (CSIR), India for a Fellowship.
Appendix A. Supplementary material
Fig. 8. XRPD patterns of 1, 1aꢀ4H2O and 1a.
CCDC 818490, 818491, 818492, 818493, 818494, and 818495
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
quest/cif. Supplementary data associated with this article can be
grow along the crystallographic b axis and form a one-dimensional
tape (Fig. 6). In the tape each hexamer shares two water molecules
(O8 and O10) and the overall cluster may be represented by T6(2)
according to water cluster notation. T6(2) signifies a tape consist-
ing of six-membered water rings involved in one-dimensional
propagation along a particular direction where two water mole-
cules are shared between the adjacent rings [94]. The edge-shared
one-dimensional water tape observed in the small water clusters is
considered to be a simplified model of ice [95,96].
Thermogravimetric analysis of 1aꢀ4H2O in the temperature
range 30–200 °C reveals a weight loss of 7.95%, close to a value
for three water molecules (Fig. 7a). The difference between exper-
imental and calculated values may be attributed to the release of
some lattice water molecules below 30 °C. Thermogravimetric
analysis of 1a also shows a step-wise weight loss of about 10% in
the temperature range 30–200 °C that correspond to the loss of
disordered solvent molecules (Fig. 7b).
The purity of bulk crystalline compounds was checked by com-
paring the experimental XRPD pattern with that of simulated pat-
tern obtained from the single-crystal data (Fig. 8). The peaks for 1
and 1aꢀ4H2O do match well with the corresponding simulated pat-
terns suggesting the purity of bulk crystalline compounds. It is
important to mention here that the XRPD patterns of the sample
after heating 1aꢀ4H2O up to 200 °C do not change much, suggesting
that the lattice structure of the host remains same after removal of
water molecules. On the other hand, the experimental XRPD data
of 1a do not match well with the simulated patterns. The experi-
mental data for 1a, however, match with the simulated pattern
of 1aꢀ4H2O. This may be attributed to the fact that the crystals of
1a lose the disordered solvent molecules present in the crystal lat-
tice resulting in the formation of polycrystalline form with a very
similar lattice structure as in 1aꢀ4H2O.
References
[1] R. Ludwig, Angew. Chem., Int. Ed. 40 (2001) 1808.
[2] D. Eisenberg, W. Kauzmann, The Structure and Properties of Water, Oxford
University Press, Oxford, 1969.
[3] K. Mitsuoka, K. Murata, T. Walz, T. Hirai, P. Agre, J.B. Heymann, A. Engel, Y.J.
Fujiyoshi, J. Struct. Biol. 128 (1999) 34.
[4] E. Westhoff, Water and Biological Macromolecules, CRC Press, Boca Raton, FL,
1993.
[5] E. Tajkhorshid, P. Nollert, M.Ø. Jensen, L.J.W. Miercke, J. O’Connell, R.M. Stroud,
K. Schulten, Science 296 (2002) 525.
[6] M. Matsumoto, S. Saito, I. Ohmine, Nature 416 (2002) 409.
[7] S. Pal, N.B. Sankaran, A. Samanta, Angew. Chem., Int. Ed. 42 (2003) 1741.
[8] A. Mukherjee, M.K. Saha, M. Nethaji, A.R. Chakravarty, Chem. Commun. (2004)
716.
[9] Z. Fei, D. Zhao, T.J. Geldbach, R. Scopelliti, P.J. Dyson, S. Antonijevic, G.
Bodenhausen, Angew. Chem., Int. Ed. 44 (2005) 5720.
[10] B.K. Saha, A. Nangia, Chem. Commun. (2005) 3024.
[11] Y. Cui, M.L. Cao, L.F. Yang, Y.L. Niu, B.H. Ye, CrystEngComm 10 (2008) 1288.
[12] R. Natarajan, J.P.H.A. Charmant, G. Orpen, A.P. Davis, Angew. Chem., Int. Ed. 49
(2010) 5125.
[13] D. Sun, H.-R. Xu, C.-F. Yang, Z.-H. Wei, N. Zhang, R.-B. Huang, L.-S. Zheng, Cryst.
Growth Des. 10 (2010) 4642.
[14] B.Q. Ma, H.L. Sun, S. Gao, Chem. Commun. (2005) 2336.
[15] M. Tadokoro, S. Fukui, T. Kitajima, Y. Nagao, S. Ishimaru, H. Kitagawa, K. Isobee,
K. Nakasuji, Chem. Commun. (2006) 1274.
[16] R. Custelcean, C. Afloroaei, M. Vlassa, M. Polverejan, Angew. Chem., Int. Ed. 39
(2000) 3094.
[17] X.F. Shi, H.B. Song, L. He, W.Q. Zhang, CrystEngComm 11 (2009) 542.
[18] C. Janiak, T.G. Scharamann, S.A. Mason, J. Am. Chem. Soc. 124 (2002) 14010.
[19] N.S. Oxtoby, A.J. Blake, N.R. Champness, C. Wilson, Chem. Eur. J. 11 (2005)
4643.
[20] Z.F. Fei, T.J. Geldbach, D.B. Zhao, R. Scopelliti, P.J. Dyson, Inorg. Chem. 44 (2005)
5200.
[21] P. Rodríguez-Cuamatzi, G. Vargas-Díaz, H.A. Höpfl, Angew. Chem., Int. Ed. 43
(2004) 3041.
[22] J.P. Zhang, X.C. Huang, Y.Y. Lin, X.M. Chen, Inorg. Chem. 44 (2005) 3146.
[23] X.J. Luan, Y.C. Chu, Y.Y. Wang, D.S. Li, P. Liu, Q.Z. Shi, Cryst. Growth Des. 6
(2006) 812.
[24] P.S. Lakshminarayanan, E.I. Suresh, P. Ghosh, J. Am. Chem. Soc. 127 (2005)
13132.
4. Conclusion
[25] A.H. Yang, H. Zhang, H.L. Gao, W.Q. Zhang, L. He, J.Z. Cui, Cryst. Growth Des. 8
(2008) 3354.
[26] Y.-P. Wu, F. Fu, D.-S. Li, Z.-H. Yang, K. Zou, Y.-Y. Wang, Inorg. Chem. Commun.
11 (2008) 621.
[27] R. Carballo, B. Covelo, C. Lodeiro, E.M. Vázquez-López, CrystEngComm 7 (2005)
294.
[28] R. Carballo, B. Covelo, F.-H.N.E. García-Martínez, A.B. Lago, M. Vázquez, E.M.
Vázquez-López, Cryst. Growth Des. 6 (2006) 629.
[29] C.H. Li, K.L. Huang, J.M. Dou, Y.N. Chi, Y.Q. Xu, L. Shen, D.Q. Wang, C.W. Hu,
Cryst. Growth Des. 8 (2008) 3141.
[30] C.-M. Jin, Z. Zhu, Z.-F. Chen, Y.-J. Hu, X.-G. Meng, Cryst. Growth Des. 10 (2010)
2054.
[31] S.K. Ghosh, P.K. Bharadwaj, Inorg. Chem. 43 (2004) 6887.
[32] S.K. Ghosh, J. Ribas, M.S.E. Fallah, P.K. Bharadwaj, Inorg. Chem. 44 (2005) 3856.
[33] R.L. Sang, L. Xu, CrystEngComm 12 (2010) 1377.
[34] K. Raghuraman, K.K. Katti, L.J. Barbour, N. Pillarsetty, C.L. Barnes, K.V. Katti, J.
Am. Chem. Soc. 125 (2003) 6955.
We have synthesized and structurally characterized four
mononuclear cobalt(II)–salicylate complexes of different tripodal
N4-donor ligands. The cobalt(II)–salicylate complex of tris(2-pyri-
dylmethyl)amine (TPA) ligand reacts with aerial oxygen to form
the corresponding six-coordinate cobalt(III)–salicylate complex
(1a) whereas other three complexes are unreactive towards dioxy-
gen. Two different crystalline forms (hydrated and non-hydrated)
of the cobalt(III)–salicylate complex were isolated depending upon
the reaction/crystallization condition. In the lattice of hydrated
crystalline form 1aꢀ4H2O, a hexameric water cluster is stabilized.
The formation of the water cluster could be controlled during the
crystallization process. The water hexamers in the crystal lattice
adopt a rare ‘pentamer planar+1’ type conformation resulting in