Journal of the American Chemical Society
COMMUNICATION
Preston May, and Windy Turchyn for helpful discussions relating
to this project.
’ REFERENCES
(1) (a) Uversky, V. N. Protein Sci. 2002, 11, 739–756. (b) Uversky,
V. N.; Gillespie, J. R.; Fink, A. L. Proteins: Struct., Funct., Bioinf. 2000,
41, 415–427. (c) Fink, A. L. Curr. Opin. Struct. Biol. 2005, 15, 35–41.
(2) (a) Tompa, P. Trends Biochem. Sci. 2002, 27, 527–533. (b)
Tompa, P. FEBS Lett. 2005, 579, 3346–3354. (c) Dyson, H. J.; Wright,
P. E. Nat. Rev. Mol. Cell Biol. 2005, 6, 197–208. (d) Tompa, P. J. Mol.
Struct. 2003, 666À667, 361–371. (e) Dunker, A. K.; Brown, C. J.;
Obradovic, Z. Adv. Protein Chem. 2002, 62, 25–49. (f) Liu, J.; Faeder,
J. R.; Camacho, C. J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19819–23.
(g) Vucetic, S.; Brown, C. J.; Dunker, A. K.; Obradovic, Z. Proteins 2003,
52, 573–84.
(3) (a) Dunker, A. K.; Brown, C. J.; Lawson, J. D.; Iakoucheva, L. M.;
Obradovic, Z. Biochemistry 2002, 41, 6573–6582. (b) Gsponer, J.; Babu,
M. M. Prog. Biophys. Mol. Biol. 2009, 99, 94–103.
(4) (a) Choi, S. I.; Lim, K.-H.; Seong, B. L. Int. J. Mol. Sci. 2011,
12, 1979–1990. (b) Tompa, P.; Csermely, P. FASEB J. 2004, 18, 1169–
1175. (c) Dyson, H. J.; Wright, P. E. Curr. Opin. Struct. Biol. 2002,
12, 54–60. (d) Tompa, P.; Kovacs, D. Biochem. Cell Biol. 2010, 88,
167–174. (e) Qu, Y.; Bolen, D. W. Biophys. Chem. 2002, 101À102,
155–65.
(5) (a) Flory, P. J. Principles of Polymer Chemistry; University Press:
Ithaca, NY, 1953. (b) Grosberg, A.; Khokhlov, A. R. Giant Molecules:
Here, there and everywhere, 2nd ed.; World Scientific Publishing Com-
pany: Singapore, 2010. (c) Grosberg, A., Khokhlov, A. R., Pandey, V.
Statistical Physics of Macromolecules; American Institute of Physics: NY,
2002.
(6) (a) Hecht, S.; Huc, I. Foldamers; WILEY-VCH: Weinheim, 2007.
(b) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem.
Rev. 2001, 101, 3893–4012. (c) Saraogi, I.; Hamilton, A. D. Chem. Soc.
Rev. 2009, 38, 1726–1743. (d) Yashima, E.; Maeda, K.; Iida, H.; Furusho,
Y.; Nagai, K. Chem. Rev. 2009, 109, 6102–6211.
(7) Stone, M. T.; Heemstra, J. M.; Moore, J. S. Acc. Chem. Res. 2006,
39, 11–20.
(8) Rosen, B. M.; Percec, V. Chem. Rev. 2009, 109, 5069–5119.
(9) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science
1997, 277, 1793–1796.
(10) Prince, R. B.; Saven, J. G.; Wolynes, P. G.; Moore, J. S. J. Am.
Chem. Soc. 1999, 121, 3114–3121.
(11) (a) Gin, M. S.; Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am.
Chem. Soc. 1999, 121, 2643–2644. (b) Gin, M. S.; Moore, J. S. Org. Lett.
2000, 2, 135–138. (c) Prince, R. B.; Moore, J. S.; Brunsveld, L.; Meijer,
E. W. Chem.—Eur. J. 2001, 7, 4150–4154.
Figure 2. Plots of fraction folded verses polymer molecular weight
obtained from normalized fluorescence intensity data (spectra normal-
ized to a constant optical density OD = 0.15). The fraction folded was
determined using the equation: fu = If À I/If À Iu (fu is the mole fraction
of foldamer in the unfolded state, I is the fluorescent intensity at 350 nm
from a foldamer-centered polymer of intermediate molecular weight,
and Iu and If are the intensity values characteristic of the fully unfolded in
chloroform and folded states measured on oligomer 4).
At the start of this work, it was unclear if entropic chains would
enhance or disfavor folding of a chain-centered foldamer. Rea-
sons that might disfavor the folded state are (i) steric clashing of
the two entropic chains (i.e., self-avoidance) and (ii) stretching of
the entropic chains by a good solvent; both reasons would exert
an elongational force on the foldamer’s helical structure and
could drive it to uncoil. In contrast, entropic chains might
promote the folded state by altering the solvent environment
in the vicinity of the foldamer. Whether such a perturbation
could significantly shift the equilibrium position of the folding
transition was not predictable at the outset of this investigation. We
have shown that when the entropic chain segment is larger than ca.
50 kDa, structuring of the mPE oligomer is enhanced, even in a
solvent for which the foldamer is otherwise denatured. This observa-
tion supports the notion that high molecular weight entropic chains
facilitate conformational ordering by altering a foldamer’s local
environment. On the basis of these findings, we suggest that
solvophobic forces generated by the covalent attachment of an
entropic chain may play an important role in intramolecular
chaperone-mediated protein folding.
(12) Reichardt, C. Solvents and Solvent Effects in Organic Chemistry,
3rd ed.; WILEY-VCH: Weinheim, 2003.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, synthetic
b
procedures, NMR, GPC, electronic absorption, fluorescence
data. This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This work was supported by the Army Research Office MURI
(Grant W911NF-0701-0409). The authors thank Matt Kryger,
19652
dx.doi.org/10.1021/ja2087163 |J. Am. Chem. Soc. 2011, 133, 19650–19652