J. M. Scott et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6608–6612
6611
Table 4
DP1, TP, IP counterscreen
32 mice received daily intranasal OVA (200
l
g in saline) challenge
to induce an allergic response consisting of sneezing and nasal
rubs. Compound 21 (10 mg/kg), dexamethasone (10 mg/kg) or
water vehicle was administered orally 1 h prior to OVA challenge
on days 31 and 32 only. The frequency of sneezing was recorded
during an 8 min session immediately following OVA challenge on
day 32. Compound 21 significantly reduced sneezing symptoms
in the sensitized mice with an effect similar to that of dexametha-
sone (Fig. 1).
In summary, we have discovered a new series of small molecule
DP2-selective antagonists. The biphenylacetic acid series has been
optimized to provide compounds such as 21 that are highly potent
in both binding and functional assays, and show good pharmacoki-
netic properties in rat and dog. Compound 21 was efficacious in a
murine model of allergic rhinitis following oral dosing. Further
investigation of compound 21 and others in this series is ongoing.
Compd
hDP1 binding
hTP binding
hIP binding
IC50 (lM)
a
a
IC50
(l
M)
IC50
(
lM)
5
18
21
25
32
31.3
12.6
4.0b
36.4
4.0
63.7b
62.4
23.0
67.4
11.3
nt
nt
56.2c
nt
33.0c
hDP1 binding performed using 3H-PGD2 and human platelet membranes. hTP
binding performed using human platelet membranes and 3H-SQ-29,548. hIP bind-
ing performed using hIP/293 membranes and 3H-iloprost.
a
Values are the mean of two experiments.
Values are the mean of at least three experiments.
Value from a single experiment (nt = not tested).
b
c
Table 5
Inhibition of human CYP isoforms and hERG
References and notes
Compd
CYP3A4
CYP2C9
CYP2D6
hERGa
inhibition
inhibition
inhibition
1. Pettipher, R.; Hansel, T. T.; Armer, R. Nat. Rev. Drug Disc. 2007, 6, 313.
2. Pettipher, R. Br. J. Pharmacol. 2008, 153, S191.
a
a
a
IC50
(l
M)
IC50
(l
M)
IC50
(l
M)
3. Reviews: (a) Ulven, T.; Kostenis, E. Expert Opin. Ther. Patents 2010, 11, 1505; (b)
Ulven, T.; Kostenis, E. Curr. Top. Med. Chem. 2006, 6, 1427; (c) Ly, T. W.; Bacon,
K. B. Expert. Opin. Invest. Drugs 2005, 14, 769.
5
18
21
25
32
>30
>30
18
>30
21
>30
>30
18
>30
18
>30
>30
>30
>30
>30
nt
1.2% at 10
IC50 >30
5.9% at 10
22% at 10
l
M
l
M
l
Mb
4. (a) Tumey, N. L.; Robarge, M. J.; Gleason, E.; Song, J.; Murphy, S. M.; Ekema, G.;
Doucette, C.; Hanniford, D.; Palmer, M.; Pawlowski, G.; Danzig, J.; Loftus, M.;
Hunady, K.; Sherf, B.; Mays, R. W.; Stricker-Krongrad, A.; Brunden, K. R.;
Bennani, Y. L.; Harrington, J. J. Bioorg. Med. Chem. Lett. 2010, 20, 3287; (b)
Grimstrip, M.; Receveur, J.-M.; Rist, O.; Frimurer, T. M.; Nielsen, P. A.;
Mathiesen, J. M.; Högberg, T. Bioorg. Med. Chem. Lett. 2010, 20, 1638; (c)
Grimstrip, M.; Rist, O.; Receveur, J.-M.; Frimurer, T. M.; Ulven, T.; Mathiesen, J.
M.; Kostenis, E.; Högberg, T. Bioorg. Med. Chem. Lett. 2010, 20, 1181; (d) Liu, J.;
Wang, Y.; Sun, Y.; Marshall, D.; Miao, S.; Tonn, G.; Anders, P.; Tocker, J.; Tang, H.
L.; Medina, J. Bioorg. Med. Chem. Lett. 2010, 19, 6840; (e) Stearns, B. A.; Baccei,
C.; Bain, G.; Broadhead, A.; Clark, R. C.; Coate, H.; Evans, J. F.; Fagan, P.;
Hutchinson, J. H.; King, C.; Lee, C.; Lorrain, D. S.; Prasit, P.; Prodanovich, P.;
Santini, A.; Scott, J. M.; Stock, N. S.; Truong, Y. P. Bioorg. Med. Chem. Lett. 2009,
19, 4647; (f) Sandham, D. A.; Adcock, C.; Bala, K.; Barker, L.; Brown, Z.; Dubois,
G.; Budd, D.; Cox, B.; Fairhurst, R. A.; Furegati, M.; Leblanc, C.; Manini, J.; Profit,
R.; Reilly, J.; Stringer, R.; Schmidt, A.; Turner, K. L.; Watson, S. J.; Willis, J.;
Williams, G.; Wilson, C. Bioorg. Med. Chem. Lett. 2009, 19, 4794; (g) Crosignani,
S.; Page, P.; Missotten, M.; Colovray, V.; Cleva, C.; Arrighi, J.-F.; Atherall, J.;
Macritchie, J.; Martin, T.; Humbert, Y.; Gaudet, M.; Pupowicz, D.; Maio, M.;
Pittet, P.-A.; Golzio, L.; Giachetti, C.; Rocha, C.; Bernardinelli, G.; Filinchuk, Y.;
Scheer, A.; Schwarz, M. K.; Chollet, A. J. Med. Chem. 2008, 51, 2227.
l
Mb
a
Values are the mean of means of at least two experiments.
Value from a single experiment (nt = not tested).
b
5. (a) He, R.; Oyoshi, M. K.; Wang, J. Y. T.; Hodge, M. R.; Jin, H.; Geha, R. S. J. Allergy
Clin. Immunol. 2010, 126, 784; (b) Stebbins, K. J.; Broadhead, A. R.; Correa, L. D.;
Scott, J. M.; Truong, Y. P.; Stearns, B. A.; Hutchinson, J. H.; Prasit, P.; Evans, J. F.;
Lorrain, D. S. Eur. J. Pharmacol. 2010, 638, 142; (c) Stebbins, K. J.; Broadhead, A.
R.; Baccei, C. S.; Scott, J. M.; Truong, Y. P.; Coate, H.; Stock, N. S.; Santini, A. M.;
Fagan, P.; Prodanovich, P.; Bain, G.; Stearns, B. A.; King, C. D.; Hutchinson, J. H.;
Prasit, P.; Evans, J. F.; Lorrain, D. S. J. Pharmacol. Exp. Ther. 2010, 332, 764; (d)
Carter, L. L.; Shiraishi, Y.; Shin, Y.; Burgess, L.; Eberhardt, C.; Wright, A. D.;
Klopfenstein, N.; McVean, M.; Gomez, A.; Chantry, D.; Cook, A.; Takeda, K.;
Gelfand, E. W. J. Allergy Clin. Immunol. 2010, 125, AB124; (e) Boehme, S. A.;
Franz-Bacon, K.; Chen, E. P.; Sasik, R.; Sprague, L. J.; Ly, T. W.; Hardiman, G.;
Bacon, K. B. Int. Immunol. 2009, 21, 81; (f) Sargent, C.; Stinson, S.; Schmidt, J.;
Dougall, I.; Bonnert, R.; Paine, S.; Saunders, M.; Foster, M. Proceedings of the
British Pharmacological Society, 7th James Black Conference 7, 2009.
R.; Sprague, L. J.; Ly, T. W.; Hardiman, G.; Boehme, S. A.; Bacon, K. B. Am. J.
Physiol. Lung Cell. Mol. Physiol. 2008, 295, L767.
6. The DP2 radioligand binding assay was performed on membranes from 293
cells stably expressing human DP2. To measure binding, [3H]-PGD2 was
incubated together with 293(hDP2) membranes in the presence of increasing
concentrations of compounds. Membranes were harvested and washed using a
Brandel Harvester and the amount of [3H]-PGD2 that remained bound to the
cells was measured on a TopCount. The concentration of compounds required
to achieve a 50% inhibition of [3H]-PGD2 binding (the IC50) was determined. The
binding assay was carried out both in the absence and presence of 0.2% human
serum albumin (HSA) to evaluate the protein shift associated with the
compounds.
Figure 1. Mouse allergic rhinitis data for compound 21 (10 mg/kg) versus
dexamethasone (10 mg/kg) and vehicle. Bars represent means SEM of n = 4–10
mice per group. ⁄P <0.05 versus vehicle, Dunnett’s post hoc comparisons following
ANOVA. Average plasma concentration of compound 21 at 2 h post-dose was 1 lM.
following oral dosing. Compound 21 was tested further in rat (so-
dium salt, IV 2 mpk in water) and dog (sodium salt, IV 2 mpk in sal-
ine, PO 5 mpk in 0.5% Methocel). In both species, the compound
displayed a long half-life (8.7 h and 7.4 h, respectively), with oral
bioavailability of 77% in rat and 89% in dog.
Given the desirable PK profile observed, compound 21 was then
evaluated in an in vivo model of allergic disease. Allergic rhinitis
can be modeled in mice by first sensitizing animals to ovalbumin
(OVA) by intraperitoneal injection and subsequently performing
nasal challenge with OVA.10 The mice then develop symptoms
which are similar to those observed in human allergic rhinitis,
including nasal itch, sneezing, and nasal congestion. The effect of
drug treatment prior to challenge can be quantified by counting
the frequency of these behaviors and comparing to untreated
animals.
7. Human blood was drawn into EDTA tubes and used within 2 h of draw. 100 ll
aliquots of fresh blood were incubated for 15 min at 37 °C plus or minus test
compound in 50% DMSO/water. PGD2 (50 nM final concentration) or vehicle
was added from a 1
lM stock in PBS and incubations were continued for 5 min
at 37 °C. The reactions were placed on ice and 250
ll of ice-cold 1:4 diluted
Cytofix (BD Biosciences) in PBS immediately added. The reactions were
transferred to FACS tubes and lysed with ammonium chloride lysing solution
at room temperature for 15 min. Tubes were centrifuged and the cells washed
In this assay female BALB/c mice were primed by intraperito-
neal OVA on days 0 and 7 (10 lg in Alum). On days 21 through