Journal of the American Chemical Society
COMMUNICATION
Scheme 1. Oxidant-Controlled Diastereoselectivity
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
spectral characterization of all new compounds. This material is
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
the allylic CÀH bond gives complex VI, which can undergo
CÀO bond forming reductive elimination to give the cis-vinylsi-
lane product. We cannot discount the potential role of Pd(III)
intermediate complexes in reactions with PhI(OAc)2 as oxidant,
as such intermediates would also increase the rate of CÀO bond
forming reductive elimination.23
The authors thank The Ohio State University for the generous
support of this research and the Ohio BioProduct Innovation
Consortium for supporting the mass spectrometry facility.
’ REFERENCES
(1) Henderson, W. H.; Check, C. T.; Proust, N.; Stambuli, J. P. Org.
Lett. 2010, 12, 824.
(2) (a) Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am.
Chem. Soc. 2010, 132, 15116. (b) Lin, B.-L.; Labinger, J. A.; Bercaw, J. E.
Can. J. Chem. 2009, 87, 264.
(3) Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.;
Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed. 2006, 45, 481.
(4) Thiery, E.; Aouf, C.; Belloy, J.; Harakat, D.; Le Bras, J.; Muzart, J.
J. Org. Chem. 2010, 75, 1771.
(5) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am.
Chem. Soc. 2005, 127, 6970.
(6) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346.
(7) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448.
(8) Fraunhoffer, K. J.; Bachovchin, D. A.; White, M. C. Org. Lett.
2005, 7, 223.
(9) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C.
J. Am. Chem. Soc. 2006, 128, 9032.
(10) Stang, E. M.; White, M. C. Nature Chem. 2009, 1, 547.
(11) B€ackvall, J. E.; Hopkins, R. B.; Grennberg, H.; Mader, M. M.;
Awasthi, A. K. J. Am. Chem. Soc. 1990, 112, 5160.
(12) Hansson, S.; Heumann, A.; Rein, T.; Åkermark, B. J. Org. Chem.
1990, 55, 975.
(13) McMurry, J. E.; Kocovsky, P. Tetrahedron Lett. 1984, 25, 4187.
(14) (a) Pilarski, L. T.; Selander, N.; Bose, D.; Szaboꢀ, K. J. Org. Lett.
2009, 11, 5518. (b) Pilarski, L. T.; Janson, P. G.; Szabꢀo, K. J. J. Org. Chem.
2011, 76, 1503.
(15) Sparks, M. A.; Panek, J. S. J. Org. Chem. 1991, 56, 3431.
(16) Kim, A. I.; Kimmel, K. L.; Romero, A.; Smitrovich, J. H.;
Woerpel, K. A. J. Org. Chem. 2007, 72, 6595.
(17) Luh, T.-Y.; Liu, S.-T. The Chemistry of Functional Groups;
Rappoport, Z., Ed. John Wiley & Sons, Inc.: New York, 1998.
(18) Miller, R. B.; Mcgarvey, G. J. Org. Chem. 1978, 43, 4424.
(19) Takeuchi, R.; Tanouchi, N. J. Chem. Soc., Perkin Trans. 1 1994,
2909.
(20) (a) Dzudza, A.; Marks, T. J. Org. Lett. 2009, 11, 1523. (b) Seo,
S.; Yu, X.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 263. (c) Qian, H.;
Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 9536.
(21) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
(22) (a) Faller, J. W.; Thomsen, M. E.; Mattina, M. J. J. Am. Chem.
Soc. 1971, 93, 2642. (b) Trost, B. M.; Machacek, M. R.; Aponick, A.
Acc. Chem. Res. 2006, 39, 747.
From this proposed mechanism, some assumptions can be
made. First, the selective formation of the trans-allylic acetate
product when using BQ can be explained by slow CÀO bond
forming reductive elimination from complex (II), which allows
the system time to funnel to the typically more thermodynami-
cally stable syn-πÀallylpalladium complex (IV), which forms the
trans-vinylsilane after reductive elimination. The faster reductive
elimination from the Pd(IV) complex (VI) is likely the reason
the cis-product is the major product using this oxidant.14a,24
However, the rate of reductive elimination is not fast enough to
completely outcompete anti to syn isomerization, hence, the
appearance of trans product. Once the cis- and trans-allylic acetates
are formed, these do not interconvert under the conditions with
BQ or PhI(OAc)2 as oxidant since submission of a 5:1 mixture of
cis/trans vinylsilanes under either reaction condition did not alter the
ratio of the diastereomers. These results suggest that the catalyst
does not insert into the products to re-form complexes II, IV, or VI.
Upon replacing AcOH from the optimized reaction condi-
tions with a 4:1 (v/v) solution of AcOH/H2O in the presence of
Pd(OAc)2 and PhI(OAc)2 as the oxidant, cis-vinylsilane 4 was
converted to the cis-vinylsilane allylic acetate in 45% yield. The
1
corresponding trans product was not observed by H NMR
spectroscopy of the crude reaction mixture. As a control experi-
ment, the corresponding trans-allylic acetate product (5) was
subjected to the above reaction conditions containing water and
did not decompose. This result suggests that both products are
not being formed concurrently. The starting material is comple-
tely consumed in the reaction. The amount of water appears to
increase catalyst or reaction intermediate decomposition rate,
thus, decreasing the reaction yield. The selectivity observed by
the addition of water may be caused by an increase in the rate of
CÀO reductive elimination or by somehow shutting down the
syn- to anti-πÀallylpalladium isomerization pathway.25
In summary, the allylic oxidation of cis-vinylsilanes to produce
branched allylic acetate cis- or trans-vinylsilane compounds oc-
curs in the presence of catalytic Pd(OAc)2. This reaction with
BQ as oxidant solely provides the branched, trans-silyl allylic
acetate product, while the use of PhI(OAc)2 as oxidant provides
the cis-silyl allylic acetate as the major product. The first intra-
molecular allylic CÀH etherification of cis-vinylsilanes produced
five- and six-membered oxygen heterocycle products that re-
tained the vinylsilane functionality. The reaction pathway is
being examined in order to suppress the deleterious side reaction
and better understand the observed selectivities.
(23) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.
(24) Yin, G; Wu, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 11978.
(25) For another report describing an interesting, unexplained effect
of water in πÀallylpalladium chemistry, see:Fernandes, R. A.; Stimac, A.;
Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 14133.
18505
dx.doi.org/10.1021/ja2089102 |J. Am. Chem. Soc. 2011, 133, 18503–18505