aldehydes or ketones has long been recognized to lead to
theformation ofazomethine ylides.5 These reactivedipolar
intermediates have seen tremendous use in synthesis.
However, despite their utility, the chemistry of azomethine
ylides has largely been limited to pericyclic reactions such
as inter- and intramolecular [3 þ 2] cycloadditions as well
as 1,5- and 1,7-electrocyclizations.6 An early example of a
nonpericyclic reaction of azomethine ylides was reported
by Cohen et al. in 1979, namely the reaction of proline with
sterically congested 2-hydroxyacetophenones to form N,
O-acetals.7 As part of our efforts to develop redox-neutral8
reaction cascades for the rapid buildup of molecular
complexity,9 we recently reported decarboxylative three-
component coupling reactions of R-amino acids and alde-
hydes with indoles, naphthols, and nitroalkanes.9e,10 In
addition, we9e and the group of Li11 independently re-
ported a copper catalyzed decarboxylative alkynylation of
R-amino acids. In other work, we were able to show that
related intramolecular reactions enable a rich azome-
thine ylide annulation chemistry.9g,12 These reactions are
thought to proceed through protonation of the intermedi-
ate azomethine ylide by a pronucleophile (e.g., indole),
resulting in the formation of iminium ion pairs that
ultimately give rise to the products.
Table 1. Evaluation of Reaction Parametersa
proline
ratio
yield
(%)
entry (equiv)
solvent
XCN (equiv)
4a:2a
1
2.0
1.5
1.5
1.3
1.2
1.5
1.3
1.2
1.5
1.5
1.5
1.5
1.5
PhMe
PhMe
PhMe
PhMe
PhMe
TMSCN (1.2)
TMSCN (1.2)
TMSCN (1.1)
TMSCN (1.2)
TMSCN (1.2)
4a only 81
2
28:1
17:1
5:1
90
89
81
77
3
4
5
4:1
6
n-BuOH TMSCN (1.2)
n-BuOH TMSCN (1.2)
n-BuOH TMSCN (1.2)
4a only >97
4a only >97
7
8
31:1
17:1
N/A
>97
9
xylenes
TMSCN (1.2)
>97
10
11
12
13
n-BuOH CuCN (1.2)
n-BuOH KCN (1.2)
Trace
4a only 53
(5) (a) Rizzi, G. P. J. Org. Chem. 1970, 35, 2069. (b) Grigg, R.;
Thianpatanagul, S. J. Chem. Soc., Chem. Commun. 1984, 180. (c) Grigg,
R.; Aly, M. F.; Sridharan, V.; Thianpatanagul, S. J. Chem. Soc., Chem.
Commun. 1984, 182.
n-BuOH K3[Fe(CN)6] (1.2) 4a only
n-BuOH EtOCOCN (1.2) 5:1
8
55
a Reactions were performed on a 1 mmol scale.
(6) For selected reviews on azomethine ylide chemistry, see: (a)
Padwa, A. 1,3-Dipolar Cycloaddition Chemistry, Vol. 1; Wiley: New York,
1984. (b) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry, Vol. 2;
Wiley; New York, 1984. (c) Gothelf, K. V.; Jorgensen, K. A. Chem. Rev.
1998, 98, 863. (d) Padwa, A.; Pearson, W. H. Synthetic Applications of
1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural
Products, Vol. 59; Wiley: Chichester, U.K., 2002. (e) Najera, C.; Sansano,
J. M. Curr. Org. Chem. 2003, 7, 1105. (f) Coldham, I.; Hufton, R. Chem.
Rev. 2005, 105, 2765. (g) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem.
Rev. 2006, 106, 4484. (h) Bonin, M.; Chauveau, A.; Micouin, L. Synlett
2006, 2349. (i) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247. (j)
Najera, C.; Sansano, J. M. Top. Heterocycl. Chem. 2008, 12, 117. (k)
Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887. (l) Nyerges, M.;
Toth, J.; Groundwater, P. W. Synlett 2008, 1269. (m) Pineiro, M.; Pinho
e Melo, T. M. V. D. Eur. J. Org. Chem. 2009, 5287. (n) Burrell, A. J. M.;
Coldham, I. Curr. Org. Synth. 2010, 7, 312. (o) Adrio, J.; Carretero, J. C.
Chem. Commun. 2011, 47, 6784.
(7) Cohen, N.; Blount, J. F.; Lopresti, R. J.; Trullinger, D. P. J. Org.
Chem. 1979, 44, 4005.
(8) For discussions on redox-economy, see: (a) Burns, N. Z.; Baran,
P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009, 48, 2854. (b)
Newhouse, T.; Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38,
3010.
(9) (a) Zhang, C.; De, C. K.; Mal, R.; Seidel, D. J. Am. Chem. Soc.
2008, 130, 416. (b) Murarka, S.; Zhang, C.; Konieczynska, M. D.; Seidel,
D. Org. Lett. 2009, 11, 129. (c) Zhang, C.; Murarka, S.; Seidel, D. J. Org.
Chem. 2009, 74, 419. (d) Murarka, S.; Deb, I.; Zhang, C.; Seidel, D.
J. Am. Chem. Soc. 2009, 131, 13226. (e) Zhang, C.; Seidel, D. J. Am.
Chem. Soc. 2010, 132, 1798. (f) Deb, I.; Seidel, D. Tetrahedron Lett. 2010,
51, 2945. (g) Zhang, C.; Das, D.; Seidel, D. Chem. Sci. 2011, 2, 233. (h)
Haibach, M. C.; Deb, I.; De, C. K.; Seidel, D. J. Am. Chem. Soc. 2011,
133, 2100. (i) Deb, I.; Das, D.; Seidel, D. Org. Lett. 2011, 13, 812. (j) Deb,
I.; Coiro, D. J.; Seidel, D. Chem. Commun. 2011, 47, 6473. (k) Vecchione,
M. K.; Sun, A. X.; Seidel, D. Chem. Sci. 2011, 2, 2178.
We reasoned that azomethine ylides may be converted to
valuable Strecker-type products if they were exposed to an
appropriate source of cyanide. Consequently, we decided to
investigate this possibility by allowing proline and benzal-
dehyde to react in the presence of various cyanide sources.
Conventional thermal reaction conditions were initially
evaluated but quickly abandoned in favor of reactions
performed under microwave irradiation, as the latter led
to vastly accelerated reaction rates. The results of this survey
are summarized in Table 1. Gratifyingly, the reaction
proceeded as anticipated and the desired regioisomer 4a
was consistently formed as the predominant product, with
only small amounts of 2a being obtained.13ꢀ15 In favorable
cases, the formation of 2a could be suppressed completely.
Although various sources of cyanide including simple po-
tassium cyanide enabled product formation, the use of
(13) The undesired regioisomer 2a is available via classic Strecker
chemistry. For instance, see: (a) Trost, B. M.; Spagnol, M. D. J. Chem.
Soc., Perkin Trans. 1 1995, 2083. (b) Ranu, B. C.; Dey, S. S.; Hajra, A.
Tetrahedron 2002, 58, 2529. (c) Saidi, M. R.; Nazari, M. Monatsh. Chem.
2004, 135, 309. (d) Mojtahedi, M. M.; Abaee, M. S.; Abbasi, H. Can.
J. Chem. 2006, 84, 429. (e) Rajabi, F.; Ghiassian, S.; Saidi, M. R. Green
Chem. 2010, 12, 1349.
(10) For oxidative variants of these reactions, see: (a) Bi, H.-P; Zhao,
L.; Liang, Y.-M; Li, C.-J. Angew. Chem., Int. Ed. 2009, 48, 792. (b) Bi,
H.-P; Chen, W.-W; Liang, Y.-M.; Li, C.-J. Org. Lett. 2009, 11, 3246.
(11) Bi, H.-P.; Teng, Q.; Guan, M.; Chen, W.-W.; Liang, Y.-M.; Yao,
X.; Li, C.-J. J. Org. Chem. 2010, 75, 783.
(12) For other nonpericyclic CꢀC and CꢀX bond formations via
decarboxylation of amino acids, see: (a) Zheng, L.; Yang, F.; Dang, Q.;
Bai, X. Org. Lett. 2008, 10, 889. (b) Wang, Q.; Wan, C.; Gu, Y.; Zhang,
J.; Gao, L.; Wang, Z. Green Chem. 2011, 13, 578. (c) Xu, W.; Fu, H.
J. Org. Chem. 2011, 76, 3846. (d) Yang, D.; Zhao, D.; Mao, L.; Wang, L.;
Wang, R. J. Org. Chem. 2011, 76, 6426. (e) Yan, Y.; Wang, Z. Chem.
Commun. 2011, 47, 9513.
(14) Compound 4a has previously been prepared via oxidative
cyanation. For instance, see: (a) Bonnett, R.; Clark, V. M.; Giddey,
A.; Todd, A. J. Chem. Soc. 1959, 2087. (b) Ho, B.; Castagnoli, N., Jr.
J. Med. Chem. 1980, 23, 133. (c) Sungerg, R. J.; Theret, M. H.; Wright, L.
Org. Prep. Proced. Int. 1994, 26, 386. (d) Yang, T. K.; Yeh, S. T.; Lay,
Y. Y. Heterocycles 1994, 38, 1711. (e) Le Gall, E.; Hurvois, J.-P.;
Sinbandhit, S. Eur. J. Org. Chem. 1999, 2645. (f) Petride, H.; Draghici,
C.; Florea, C.; Petride, A. Cent. Eur. J. Chem. 2004, 2, 302.
(15) For alternate preparations of 4a, see: (a) Zhao, S.; Jeon, H.-B.;
Nadkarni, D. V.; Sayre, L. M. Tetrahedron 2006, 62, 6361. (b) Couty, F.;
David, O.; Larmanjat, B.; Marrot, J. J. Org. Chem. 2007, 72, 1058. (c)
Han, J.; Xu, B.; Hammond, G. B. Org. Lett. 2011, 13, 3450.
Org. Lett., Vol. 13, No. 24, 2011
6585