Journal of the American Chemical Society
ARTICLE
(28) Bai, L.; Wang, J.-X. Curr. Org. Chem. 2005, 9, 535–553.
’ ACKNOWLEDGMENT
(29) Nagarapu, L.; Mallepalli, R.; Arava, G.; Yeramanchi, L. Eur.
J. Chem. 2010, 1, 228–231.
(30) Candeias, N. R.; Branco, L. C.; Gois, P. M. P.; Afonso, C. A. M.;
The authors acknowledge the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), Universitꢀe de
Montreal and the Centre for Green Chemistry and Catalysis
for generous funding. A.-C.B. thanks NSERC for an Alexander-
Graham Bell Graduate Scholarship and an FQRNT Graduate
Scholarship.
Trindade, A. F. Chem. Rev. 2009, 109, 2703–2802.
(31) Zhang, Z.-H. Res. J. Chem. Environ. 2006, 10, 97–98.
(32) Although the reactions appear homogeneous upon extended
stirring or after the reaction have begun to warm to 60°C, it should be
noted that there is ample precedent to suggest that indeed PEG400 is
forming micellar structures in solution that may be responsible for the
phase separation effect (see ref 19). To date, we have performed
preliminary experiments using salt effects (using LiClO4 and
(NH4)2SO4) to determine whether micelles may be present, however
the experiments were inconclusive. For a discussion of salt effects in
macromolecular structures that were used in our preliminary studies see:
Zhang, Y.; Cremer, P. S. Curr. Opin. Chem. Biol. 2006, 10, 658–663.
(33) Jones, C. S.; O’Connor, M. J.; Haley, M. M. Acetylene Chem.
2005, 303–385.
’ REFERENCES
(1) Roxburgh, J. C. Tetrahedron 1995, 51, 9767–9822.
(2) Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. Nat. Rev. Drug
Discovery 2008, 7, 608–624.
(3) Lamarre, D.; et al. Nature 2003, 426, 186–189.
(4) Matsuda, H.; Watanabe, S.; Yamamoto, K. Chem. Biodiversity
2004, 1, 1985–1991.
(5) Rueedi, G.; Nagel, M.; Hansen, H.-J. Org. Lett. 2004, 6, 2989–2991.
(6) Fehr, C.; Galindo, J.; Etter, O.; Thommen, W. Angew. Chem., Int.
Ed. 2002, 41, 4523–4526.
(7) Bolduc, P.; Jacques, A.; Collins, S. K. J. Am. Chem. Soc. 2010,
132, 12790–12791.
(8) White, C. J.; Yudin, A. K. Nature Chem. 2011, 3, 509–524.
(9) Beach, E. S.; Cui, Z; Anastas, P. T. Energy Environ. Sci. 2009, 2,
1038–1049.
(10) Parenty, A.; Moreau, X.; Campagne, J. M. Chem. Rev. 2006,
106, 911–939.
(11) Gradillas, A.; Pꢀerez-Castellsm, J. Angew. Chem., Int. Ed. 2006,
45, 6086–6101.
(12) F€urstner, A.; Langemann, K. Synthesis 1997, 7, 792–803.
(13) Shu, C.; Zeng, X.; Hao, M.-H.; Wei, X.; Yee, N. K.; Busacca,
C. A.; Han, Z.; Farina, V.; Senanayake, C. H. Org. Lett. 2008, 10,
1303–1306.
(14) Nicola, T.; Brenner, M.; Donsbach, K.; Kreye, P. Org. Process
Res. Dev. 2005, 9, 513–515.
(15) Farina, V.; Shu, C.; Zeng, X.; Wei, X.; Han, Z.; Yee, N. K.;
Senanayake, C. H. Org. Process Res. Dev. 2009, 13, 250–254.
(16) Gupta, M.; Paul, S.; Gupta, R. Curr. Sci. 2010, 99, 1341–1360.
(17) For an example of a liquid/liquid phase separation strategies in
an industrial process see:Herrmann, W. A.; Kohlpaintner, C. W. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1524–1544.
(18) Phase separation strategies in organic synthesis typically involve
synthesis on solid phase supports. Some examples of liquid/liquid phase
separation techniques in synthesis include fluorous biphasic systems:
Horvath, I. T.; Rabai, J. Science 1994, 266, 72–75.
(19) The term phase separation is used in a general sense, as it could
be achieved by various mechanisms, including hydrophilic/hydrophobic
solvent mixtures with no miscibility, to the formation of aggregates or
micelles. Micellar catalysis could achieve a similar phase separation, but
has been mostly exploited as a route towards achieving catalysis in
hydrophilic media, see:(a) Stavber, G. Aust. J. Chem. 2010, 63, 849–849.
For examples of micelles formed from PEG400, see:(b) Hasegawa, U.;
van der Vlies, A. J.; Simeoni, E.; Wandrey, C.; Hubbell, J. A. J. Am. Chem.
Soc. 2010, 132, 18273–18280. (c) Dong, W.-F.; Kishimura, A.; Anraku,
Y.; Chuanoi, S.; Kataoka, K. J. Am. Chem. Soc. 2009, 131, 3804–3805.
(20) Hong, S. H.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128,
3508–3509.
(21) William, A. S. Synthesis 1999, 10, 1707–1723.
(22) Acetylene Chemistry: Chemistry, Biology, and Material Science;
Diederich, F., Stang, P. J., Tykwinski, R. R., Eds.; Wiley-VCH: Weinheim,
Germany, 2005.
(23) Hay, A. S. J. Org. Chem. 1960, 25, 1275–1276.
(24) Hay, A. S. J. Org. Chem. 1962, 27, 3320–3321.
(25) Haley, M. M.; Pak, J. J.; Brand, S. C. Top. Curr. Chem. 1999,
201, 81–130.
(26) Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org. Lett. 2009,
11, 709–712.
(27) Namboodir, V. V.; Varma, S. R. Green Chem. 2001, 3, 146–148.
19981
dx.doi.org/10.1021/ja208902t |J. Am. Chem. Soc. 2011, 133, 19976–19981