Journal of the American Chemical Society
Communication
Am. Chem. Soc. 2013, 135, 14052. (e) Canta, M.; Font, D.; Gom
Ribas, X.; Costas, M. Adv. Synth. Catal. 2014, 356, 818. (f) Font, D.;
Canta, M.; Milan, M.; Cusso, O.; Ribas, X.; Klein Gebbink, R. J. M.;
́
ez, L.;
demonstration of this approach, we have studied the thiol−ene
coupling of (+)-longifolene xanthate 27 with a glucose-derived
allyl glycoside. Following quantitative conversion of 27 to its
thiol derivative, photochemical thiol−ene delivered glycoconju-
gated (+)-longifolene adduct 33 in 62% yield. Considering the
mild conditions and functional group compatibility of the C−H
xanthylation and the broad utility of the thiol−ene process, we
expect this tactic will offer major opportunities in the conjugation
of complex molecules. We would also note that while Figure 4
offers a number of attractive avenues for molecular derivatization
via C−H xanthylation, this is certainly not comprehensive.
Alkylation, alkynylation,16 and acylation reactions,27 among
others, are also possible using alkyl xanthates.
Applying different transformations to a single xanthate
substrate provides facile access to a wide range of derivatives
via a C−H diversification approach. As an example, (+)−
sclareolide xanthate 21 is converted to seven different derivatives
in a single step following the initial C−H xanthylation (Figure 4).
This highlights an additional unique feature of our approach: not
only does the xanthylation unlock new aliphatic C−H trans-
formations, it also facilitates the synthesis of diverse analogs via a
simple switch of reagent in the product elaboration rather than
through the application of a new C−H functionalization.
The versatility of the current aliphatic C−H xanthylation, in
addition to our previous efforts in C−H halogenation, clearly
highlights the unique capabilities of functionalized amides in
enabling a broad range of practical aliphatic C−H trans-
formations. These studies also demonstrate the potential for
enhanced site selectivity and functional group compatibility with
respect to other aliphatic C−H functionalizations. We anticipate
that these characteristics will lead to powerful applications in
molecular derivatization for the synthesis and study of
functionalized molecules in a number of contexts.
́
Costas, M. Angew. Chem., Int. Ed. 2016, 55, 5776.
(4) (a) Huang, X.; Bergsten, T. M.; Groves, J. T. J. Am. Chem. Soc.
2015, 137, 5300. (b) Sharma, A.; Hartwig, J. F. Nature 2015, 517, 600.
(c) Huang, X.; Groves, J. T. ACS Catal. 2016, 6, 751.
(5) (a) Liu, W.; Groves, J. T. J. Am. Chem. Soc. 2010, 132, 12847.
(b) Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A., III;
Groves, J. T. Science 2012, 337, 1322. (c) Bloom, S.; Pitts, C. R.; Miller,
D. C.; Haselton, N.; Holl, M. G.; Urheim, E.; Lectka, T. Angew. Chem.,
Int. Ed. 2012, 51, 10580. (d) Halperin, S. D.; Fan, H.; Chang, S.; Martin,
R. E.; Britton, R. Angew. Chem., Int. Ed. 2014, 53, 4690.
(6) (a) Schmidt, V. A.; Quinn, R. K.; Brusoe, A. T.; Alexanian, E. J. J.
Am. Chem. Soc. 2014, 136, 14389. (b) Quinn, R. K.; Konst, Z. A.;
̈
Michalak, S. E.; Schmidt, Y.; Szklarski, A. R.; Flores, A. R.; Nam, S.;
Horne, D. A.; Vanderwal, C. D.; Alexanian, E. J. J. Am. Chem. Soc. 2016,
138, 696.
(7) (a) Quiclet-Sire, B.; Zard, S. Z. Chem. - Eur. J. 2006, 12, 6002.
(b) Quiclet-Sire, B.; Zard, S. Z. Pure Appl. Chem. 2011, 83, 519.
(c) Quiclet-Sire, B.; Zard, S. Z. Beilstein J. Org. Chem. 2013, 9, 557.
(8) There are a limited number of reports of C−H thiolations and
sulfoxidations of simple hydrocarbons, generally with the substrate in
large excess: (a) Du, B.; Jin, B.; Sun, P. Org. Lett. 2014, 16, 3032.
(b) Zhao, J.; Fang, H.; Han, J.; Pan, Y.; Li, G. Adv. Synth. Catal. 2014,
356, 2719. (c) Ferguson, R. R.; Crabtree, R. H. J. Org. Chem. 1991, 56,
5503. (d) Ishii, Y.; Matsunaka, K.; Sakaguchi, S. J. Am. Chem. Soc. 2000,
122, 7390.
(9) Although there has been a sole report of an aliphatic C−H
xanthylation, reactions were limited to the functionalization of ethereal
and hydrocarbon solvents with the substrate in large excess: Sato, A.;
Yorimitsu, H.; Oshima, K. Chem. - Asian J. 2007, 2, 1568.
(10) Gagosz, F.; Moutrille, C.; Zard, S. Z. Org. Lett. 2002, 4, 2707.
1
(13) For products 13, 16, and 22, isolated yields are lower than H
NMR yields owing to challenges in product isolation.
(14) Oxidation at the C6 site of cholestanol acetate has been reported
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
in very low yield (1.6%): Barton, D. H. R.; Gokturk, A. K.; Morzycki, J.
̈
̈
S
W.; Motherwell, W. B. J. Chem. Soc., Perkin Trans. 1 1985, 583.
(15) Dev, S. Acc. Chem. Res. 1981, 14, 82.
(16) Bertrand, F.; Quiclet-Sire, B.; Zard, S. Z. Angew. Chem., Int. Ed.
1999, 38, 1943.
(17) Jean-Baptiste, L.; Yemets, S.; Legay, R.; Lequeux, T. J. Org. Chem.
2006, 71, 2352.
Experimental procedures and spectral data for all new
(18) Harbeson, S. L.; Tung, R. D. Annu. Rep. Med. Chem. 2011, 46, 403.
(19) Allais, F.; Boivin, J.; Nguyen, V. T. Beilstein J. Org. Chem. 2007, 3,
46.
(20) For a selective C−H trifluoroacetoxylation that overcomes this
́
́
challenge, see: Asensio, G.; Mello, R.; Gonzalez-Nunez, M. E.;
Castellano, G.; Corral, J. Angew. Chem., Int. Ed. Engl. 1996, 35, 217.
(21) For a related reaction using a dithiocarbamate, see: Grainger, R.
S.; Welsh, E. J. Angew. Chem., Int. Ed. 2007, 46, 5377.
(23) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem.
2014, 14, 941.
(24) (a) Guo, S.; Zhang, X.; Tang, P. Angew. Chem., Int. Ed. 2015, 54,
4065. (b) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen,
Q.-Y. Angew. Chem., Int. Ed. 2015, 54, 4070.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the ACS PRF (55108-ND1),
Award R01 GM 120163 from the National Institute of General
Medical Sciences, an Eliel Award (W.L.C.), and a Royster
Fellowship (C.G.N.).
(25) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
(26) (a) Azagarsamy, M. A.; Anseth, K. S. ACS Macro Lett. 2013, 2, 5.
(b) Hoyle, C. E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49, 1540.
(27) Kim, S.; Song, H.-J.; Choi, T.-L.; Yoon, J. Y. Angew. Chem., Int. Ed.
2001, 40, 2524.
REFERENCES
■
(1) (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int.
Ed. 2012, 51, 8960. (b) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed.
2011, 50, 3362. (c) White, M. C. Science 2012, 335, 807.
(2) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W.
Chem. Soc. Rev. 2016, 45, 546.
(3) (a) Brodsky, B. H.; Du Bois, J. J. Am. Chem. Soc. 2005, 127, 15391.
(b) Chen, M. S.; White, M. C. Science 2007, 318, 783. (c) Chen, M. S.;
White, M. C. Science 2010, 327, 566. (d) Gormisky, P. E.; White, M. C. J.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX