B. Das et al. / Tetrahedron Letters 52 (2011) 6497–6500
6499
A plausible mechanism10 of the present conversion using this
catalyst is shown in Scheme 2. The mechanism involves the (het-
eroaryl) Cu(I) intermediate I and the Cu(III) complex II to yield
the N-alkynyl derivative 3.
In another probable mechanism alkynyl bromides derived from
1,1-dibromo-1-alkenes interact with I to form the complex IV
Though it is reported11 in some cases that alkynyl bromides (de-
rived from the gem-dibromo alkenes by dehydrobromination) re-
quire strong bases and higher temperature, we feel under the
conditions mentioned here the second mechanism (Scheme 3) is
more favorable for the present conversion leading to the alkynylat-
ed products.5c
In conclusion we have developed for the first time an efficient
method12 for direct N-alkynylation of heteroarenes with 1,1-dibro-
mo 1-alkene using [Cu(Phen)PPh3Br] as a cost-effective catalyst.
which subsequently produces the alkynylated derivative
(Scheme 3).
3
The present conversion took place spontaneously and we were
not able to isolate any intermediate. However, to get an idea about
the mechanism of the conversion we carried out two reactions
which are mentioned below.
Acknowledgments
The authors thank CSIR and UGC, New Delhi for the financial
assistance. They are also thankful to NMR, Mass, and IR Divisions
of IICT for spectral recording.
(i) Only 1,1-dibromo-1-alkene (without using an heterocycle)
was applied8 for the conversion under the present reaction
conditions.
present
Br
References and notes
reaction
conditions
Br
1. (a) Reisch, J.; Seeger, U. Arch. Pharm. 1977, 310, 851; (b) Joshi, R. V.; Xu, Z. Q.;
Ksebati, M. B.; Kessel, D.; Corbett, T. H.; Drach, J. C.; Zemlicka, J. J. Chem. Soc.,
Perkin Trans. I 1994, 1089.
2. Brabec, C.; Scharber, M.; Johansson, H.; Comoretto, D.; Dellepiane, G.; Moggio,
I.; Cravino, A.; Hummelen, J. C.; Sariciftci, N. S. Synth. Met. 1999, 101, 298.
3. Isihara, T.; Mantani, T.; Konno, T.; Yamanaka, H. Tetrahedron 2006, 62, 3783.
4. (a) Kitamura, T.; Tashi, N.; Tsuda, K.; Chen, H.; Fujiwara, T. Heterocycles 2000,
52, 303; (b) Brandsma, L.; Mal’kina, A. G.; Trofimov, B. A. Synth. Commun. 1994,
24, 2721; (c) Wei, L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.;
Hsung, R. P. Tetrahedron 2001, 57, 459.
5. (a) Laroche, C.; Li, J.; Freyer, M. W.; Ketwin, S. M. J. Org. Chem. 2008, 73, 6462;
(b) Burley, G. A.; Davies, D. L.; Griffith, G. A.; Lee, M.; Sing, K. J. Org. Chem. 2010,
75, 980; (c) Das, B.; Reddy, G. C.; Balasubramanyam, P.; Salvanna, N. Synthesis
2011, 816.
6. (a) Das, B.; Srinivas, Y.; Harish, H.; Krishnaiah, M.; Narendar, R. Chem. Lett.
2007, 36, 1270; (b) Das, B.; Damodar, K.; Bhunia, N. J. Org. Chem. 2009, 74, 5607;
(c) Das, B.; Balasubramanyam, P.; Veeranjaneyulu, B.; Reddy, G. C. J. Org. Chem.
2009, 74, 9505; (d) Das, B.; Reddy, C. R.; Kumar, D. N.; Krishnaiah, M.; Narendar,
R. Synlett 2010, 391; (e) Das, B.; Sudhakar, C.; Srinivas, Y. Synth. Commun. 2010,
40, 2667.
7. Ramirez, F.; Desai, N. B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84, 1745.
8. Shen, W.; Thomas, S. A. Org. Lett. 2000, 2, 2857.
9. Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315.
10. Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Angew. Chem., Int. Ed. 2009, 48,
4381.
11. (a) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K.
C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003, 125, 2368; (b) Zhang, Y.;
Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004, 6, 1151.
12. General experimental procedure for N-alkynylation of imidazole and pyrazole
derivatives: To a solution of 1,1 dibromo alkene 2 (1.0 mmol) in DMSO (2 mL)
(ii) An imidazole was treated5c with bromoacetylene under the
present reaction conditions.
present
N
N
reaction
conditions
N
+
Ph
Br
N
H
1a
3a
Ph
76%
LL1CuBr
N
N
Cs2CO3
N
N
N
H
1
N
LLICuBr
Br
CuLLI
I
R
Cs2CO3
N
Br
R
Br
R
N
Br
3
LL1
R
N
N
2
imidazole (or) pyrazole
1 (1.5 mmol), Cs2CO3 (2.0 equiv), and [Cu(Phen)
Cu
(PPh3)Br] (10 mol %) were added. The mixture was heated on an oil bath at
80 °C for 3 h. The reaction was monitored by TLC. Upon completion, the
mixture was cooled to room temperature and cold H2O (10 mL) was added to
the residue. The mixture was extracted with EtOAc (2 Â 10 mL). The organic
layers were dried (anhydrous Na2SO4) and concentrated in vacuo. The viscous
mass was purified by column chromatography (silica gel, Merck 60–120 mesh,
1–4% EtOAc–hexane) to afford the pure product (3). The unreacted heteroarene
was also recovered.
Br
II
LLICuBr =Cu(Phen)(PPh3)Br
Scheme 2. Probable mechanism of the copper-catalyzed C–N cross coupling.
The spectral data of the unknown products.
Compound 3b. White solid. Mp 83–84 °C; IR: 2255, 1606, 1489, 1452,
catalyzed C-N cross coupling
1283 cmÀ1 1H NMR (200 MHz, CDCl3): d 8.10 (1H, s), 7.81 (1H, d, J = 8.0 Hz),
;
LL1CuBr
N
7.62 (1H, d, J = 8.0 Hz), 7.43 (2H, d, J = 8.0 Hz), 7.33 (2H, d, J = 8.0 Hz), 7.19 (2H,
d, J = 8.0 Hz), 2.41 (3H, s); 13C NMR (50 MHz, CDCl3): d 143.8, 142.2, 139.5,
134.6, 132.0, 129.3, 124.8, 124.1, 121.0, 118.2, 111.1, 75.9, 73.8, 21.5; ESIMS:
m/z 233 [M+H]+; Anal. Calcd for C16H12N2: C, 82.73; H, 5.21; N, 12.06. Found: C,
82.68; H, 5.27; N, 12.10.
Cs2CO3
N
1
H
N
N
LLICuBr
N
N
Compound 3c. Brown solid. Mp 81–83 °C; IR: 2258, 1605, 1490, 1455,
LLICuBr =Cu(Phen)(PPh3)Br
1239 cmÀ1 1H NMR (200 MHz, CDCl3): d 8.11 (1H, s), 7.82 (1H, d, J = 8.0 Hz),
;
7.62 (1H, d, J = 8.0 Hz), 7.49 (2H, d, J = 8.0 Hz), 7.42–7.31 (4H, m); 13C NMR
(50 MHz, CDCl3): d 143.6, 142.2, 135.1, 134.4, 133.0, 129.0, 125.1, 124.2, 121.0,
119.9, 110.8, 73.0, 70.1; ESIMS: m/z 253, 255 [M+H]+; Anal. Calcd for
C15H9N2Cl: C, 71.29; H, 3.59; N, 11.09. Found: C, 71.34; H, 3.52; N, 11.12.
Compound 3d. Yellow solid. Mp 86–87 °C; IR: 2254, 1599, 1492, 1459,
CuLLI
I
Br
R
3
N
Br
R
2
Cs2CO3
Br
N
1230 cmÀ1 1H NMR (200 MHz, CDCl3): d 8.14 (1H, s), 7.84 (1H, d, J = 8.0 Hz),
;
BrCuLLI
7.63 (1H, d, J = 8.0 Hz), 7.59–7.52 (2H, m), 7.48–7.32 (2H, m), 7.17–7.05 (2H,
m); 13C NMR (50 MHz, CDCl3): d 163.1 (d, J = 280.0 Hz), 143.9, 141.9, 133.8,
133.7, 124.9, 124.0, 120.9, 117.2, 115.8 (d, J = 10.0 Hz), 110.9, 76.1, 72.2;
ESIMS: m/z 237 [M+H]+; Anal. Calcd for C15H9N2F: C, 76.26; H, 3.84; N, 11.86.
Found: C, 76.29; H, 3.78; N, 11.79.
R
IV R
Scheme 3. An alternative probable mechanism of the copper-catalyzed C–N cross
Compound 3e. Yellow oil; IR: 2270, 1613, 1496, 1460, 1225 cmÀ1 1H NMR
;
(200 MHz, CDCl3): d 7.98 (1H, s), 7.75 (1H, d, J = 8.0 Hz), 7.50 (1H, d, J = 8.0 Hz),
coupling.