LETTER
Allyl and Benzyl Dance under Basic Conditions
1819
J = 8.3 Hz), 7.12 (d, 1 H, J = 8.3 Hz), 6.90–6.85 (m, 1 H), 5.81–5.67
(m, 1 H), 5.75 (d, 0.4 H, J = 14.6 Hz, H-A1), 5.66 (d, 0.6 H, J = 14.6
Hz, H-A), 5.11 (d, 0.6 H, J = 14.6 Hz), 5.07 (d, 0.4 H, J = 14.6 Hz),
4.98 (d, 1 H, J = 10.4 Hz), 4.11 (d, 0.6 H, J = 14.6 Hz), 4.02 (d, 0.4,
J = 14.6 Hz), 3.20 (dd, 0.6 H, J = 5.8, 13.9 Hz), 3.12 (dd, 0.4 H,
J = 5.8, 13.9 Hz), 2.98 (dd, 0.4 H, J = 5.8, 13.9 Hz), 2.92 (dd, 0.6 H,
J = 5.8, 13.9 Hz), 2.83 (dd, 0.4 H, J = 5.3, 7.3 Hz), 2.75 (dd, 0.6 H,
J = 4.3, 7.3 Hz), 1.79 (br s, 1 H), 1.56–1.47 (m, 0.8 H), 1.44–1.33
(m, 1.2 H), 0.80 (t, 1.2 H, J = 7.6 Hz), 0.78 (t, 1.8 H, J = 7.6 Hz).
13C NMR of A (100.6 MHz, CDCl3): d = 174.4, 146.6, 136.7, 135.3,
134.4, 133.7, 132.5, 130.6, 129.8, 128.7, 126.0, 115.5, 59.8, 52.2,
49.9, 26.8, 10.3. 13C NMR of A1 (100.6 MHz, CDCl3): d = 174.3,
146.8, 136.7, 135.3, 134.4, 133.7, 132.5, 130.7, 129.7, 128.6, 125.9,
115.8, 59.4, 52.2, 50.2, 25.6, 10.1. IR (thin film): 2970, 2857, 1662,
1601, 1531, 1488, 1352, 1277, 1263, 1093, 1018 cm–1. HRMS: m/z
calcd for C20H22ClN3O3: 387.1350; found: 387.1354.
formation of allyl aniline 1e is consistent with a lower mi-
gratory ability of the benzyl group.
The recovery of starting allyl or benzyl derivatives under
treatment with potassium carbonate is certainly associated
with an equilibrium between the aniline and amide anions.
Under strongly basic conditions, the amide anion further
evolves to give the more thermodynamically stable N-aryl
anion which is quenched at the end of the reaction giving
the NH-aryl adduct 2 (Scheme 3). However, in the pres-
ence of traces of a base, 2 gives the N-aryl anion in equi-
librium with the more basic secondary amide anion which
may be protonated by starting 2. Once the amide is proto-
nated, potassium carbonate is not basic enough to reform
the amide causing a shift of the equilibrium towards 1.
This was confirmed when 2a was treated by a catalytic
amount of sodium hydride in acetonitrile, 1a could be then
quantitatively recovered after leaving the reaction over-
night at room temperature.
N-(4-Chlorobenzyl)-2-(2-nitrophenylamino)-N-(prop-2-ynyl)
Butanamide (2f)
Prepared from 1f in a 1 mmol scale and isolated as 0.55:0.45 mix-
ture of two rotamers (A/A1). 1H NMR (400 MHz, CDCl3): d = 8.13–
8.06 (m, 1 H), 7.58–7.52 (m, 2 H), 7.22 (d, 1 H, J = 4.5 Hz), 7.20
(d, 1 H, J = 4.5 Hz), 7.13 (d, 1 H, J = 8.3 Hz), 7.09 (d, 1 H, J = 8.3
Hz), 7.04–6.99 (m, 0.45 H), 6.92–6.87 (m, 0.55 H), 5.69 (d, 0.45 H,
J = 14.6 Hz), 5.55 (d, 0.55 H, J = 14.6 Hz), 4.10 (d, 0.55 H, J = 14.6
Hz), 4.00 (d, 0.45 H, J = 14.6 Hz), 3.39 (dd, 0.45 H, J = 2.3, 16.4
Hz), 3.25 (t, 1 H, J = 3.0 Hz), 3.18 (dd, 0.55 H, J = 2.5, 16.4 Hz),
2.97 (dd, 0.45 H, J = 4.5, 7.6 Hz), 2.90 (dd, 0.55 H, J = 4.5, 7.6 Hz),
2.01 (t, 0.45 H, J = 2.5 Hz), 1.96 (br s, 1 H), 1.92 (t, 0.55 H, J = 2.5
Hz), 1.57–1.45 (m, 0.9 H), 1.45–1.30 (m, 1.1 H), 0.76 (t, 3 H,
J = 7.6 Hz). 13C NMR of A (100.6 MHz, CDCl3): d = 173.9, 146.2,
134.8, 134.3, 133.9, 133.8, 133.4, 130.5, 129.9, 128.7, 126.2, 81.7,
71.0, 59.1, 52.2, 36.5, 26.7, 10.1. 13C NMR of A1 (100.6 MHz,
CDCl3): d = 173.8, 146.6, 135.0, 134.1, 133.9, 133.7, 132.5, 130.9,
129.7, 128.6, 126.0, 82.0, 71.6, 59.2, 52.4, 36.7, 25.7, 10.0. IR (thin
film): 2928, 2857, 1662, 1606, 1531, 1493, 1394, 1347, 1272, 1089,
1013 cm–1. HRMS: m/z calcd for C20H20ClN3O3: 385.1193; found:
385.1195.
O
NO2
NH
O
NO2
R2N
NaH, CH3CN
N
R1
R2HN
R1
1
2
then
hydrolysis
NaH
K2CO3
O
NO2
O
NO2
N
N
R2N
R2N
R1
R1
Acknowledgment
S.R.P. thanks the ANR-CP2D Program (ANR MUSE) for a post-
doctoral fellowship.
Scheme 3 Base-promoted equilibria
References and Notes
In conclusion, we have disclosed a new rearrangement of
Ugi-type adducts under basic conditions. The reaction is
reversible and controlled by the amount of base used in
the reaction medium. We are currently studying synthetic
applications involving potential trapping of the aniline an-
ion generated in the process.
(1) (a) El Kaïm, L.; Grimaud, L.; Oble, J. Angew. Chem. Int. Ed.
2005, 117, 7961. (b) El Kaïm, L.; Gizolme, M.; Grimaud,
L.; Oble, J. J. Org. Chem. 2007, 72, 4169. (c) Barthelon,
A.; El Kaim, L.; Gizolme, M. Eur. J. Org. Chem. 2008,
5974.
(2) (a) El Kaim, L.; Gizolme, M.; Grimaud, L.; Oble, J. J. Org.
Chem. 2007, 72, 5835. (b) Oble, J.; El Kaim, L.; Gizzi, M.;
Grimaud, L. Heterocycles 2007, 73, 503. (c) El Kaim, L.;
Grimaud, L.; Gizzi, M. Org. Lett. 2008, 10, 3417.
(d) Coffinier, D.; El Kaim, L.; Grimaud, L. Org. Lett. 2009,
11, 995. (e) Barthelon, A.; Legoff, X.-F.; El Kaim, L.;
Grimaud, L. Synlett 2010, 153. (f) El Kaïm, L.; Grimaud, L.
Mol. Diversity 2010, 14, 855. (g) El Kaim, L.; Grimaud, L.;
Wagschal, S. J. Org. Chem. 2010, 75, 5343. (h) El Kaim,
L.; Grimaud, L.; Wagschal, S. Chem. Commun. 2011, 47,
1887.
General Procedure for the Synthesis of Migrated Products
To a 0.5 M solution of Ugi–Smiles adduct in MeCN was added NaH
(95%, 1.5 equiv) at 0 °C. The resulting mixture was stirred at r.t. un-
til completion, then quenched with a sat. aq solution of NH4Cl, and
extracted with EtOAc. The organic phases were collected and con-
centrated in vacuo to afford migrated products after purification by
flash column chromatography on silica gel.
N-Allyl-N-(4-chlorobenzyl)-2-(2-nitrophenylamino) Butan-
amide (2c)
Prepared from 1c in a 0.5 mmol scale and isolated as 0.6:0.4 mixture
of two rotamers (A/A1). 1H NMR (400 MHz, CDCl3): d = 8.10–8.06
(m, 1 H), 7.58–7.48 (m, 2 H), 7.29–7.23 (m, 2 H), 7.15 (d, 1 H,
(3) (a) El Kaim, L.; Gamez-Montaño, R.; Grimaud, L.; Ibarra-
Rivera, T. Chem. Commun. 2008, 1350. (b) El Kaim, L.;
Grimaud, L.; Legoff, X.-F.; Schiltz, A. Org. Lett. 2011, 13,
534.
Synlett 2011, No. 13, 1816–1820 © Thieme Stuttgart · New York