compound 5 offers attractive features including a large spectral
separation between excitation and emission, little pH sensitivity
within the physiological window, ratiometric imaging capability,
and defined subcellular localization preference. The ongoing
work includes the application of the reported FRET strategy
to convert other red-emitting fluorophores into ion indicators,
as well as strategy development for targeting other subcellular
organelles.
Notes and references
1 S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry,
University Science Books, Mill Valley, CA, 1994.
2 B. L. Vallee and K. H. Falchuk, Psychological Reports, 1993, 73, 79.
3 J. M. Berg and Y. Shi, Science, 1996, 271, 1081.
Fig. 4 Confocal fluorescence images of living HeLa (S3) cells transfected
with mCerulean3 TOMM-20 that were incubated with 5 (1.8 mM,
A–C) and 4 (6.0 mM, D–F) for 30 min. Left: green channel, lex 405 nm,
lem 425–475 nm; middle: red channel, lex 543 nm, lem 580–680 nm;
right: merged image. Scale bar: 10 mm.
4 W. N. Lipscomb and N. Strater, Chem. Rev., 1996, 96, 2375.
¨
5 W. Maret, BioMetals, 2001, 14, 187.
6 J. Nutr., 2000, 130, 14715S–1483S.
7 C. J. Frederickson, J.-Y. Koh and A. I. Bush, Nat. Rev. Neurosci.,
2005, 6, 449.
fluorescent protein (CFP) fused with a mitochondrial targeting
sequence whose emission is shown in the green channel
(Fig. 4A and D). Lacking the TPP group, compound 4 forms
particulates intracellularly (Fig. 4E) which show poor coloca-
lization with the CFP (Fig. 4F). The overall intracellular
fluorescence intensity from compound 4 is low, which is
consistent with the observed weak fluorescence of the NDI
fluorophore in aqueous solutions. The TPP-containing 5
(Fig. 4B), on the other hand, localizes selectively in mitochondria
(Fig. 4C) and displays a surprisingly strong intracellular
fluorescence relative to that of 4. Similar contrast was observed
between the model compounds 2 and 3 (Fig. S15, ESIw). The
strong fluorescence of intracellular 5 may be attributed to the
dispersion of the indicator molecules into the inner mitochondrial
membrane29 or a relatively organic-like mitochondrial matrix.
Further investigation to account for this observation is
ongoing.
8 A. Kre˛zel and W. Maret, JBIC, J. Biol. Inorg. Chem., 2006,
˙
11, 1049.
9 E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008,
108, 1517.
10 R. McRae, P. Bagchi, S. Sumalekshmy and C. J. Fahrni, Chem.
Rev., 2009, 109, 4780.
11 E. Tomat and S. J. Lippard, Curr. Opin. Chem. Biol., 2010, 14, 225.
12 E. M. Nolan and S. J. Lippard, Acc. Chem. Res., 2009, 42, 193.
13 Z. Xu, J. Yoon and D. R. Spring, Chem. Soc. Rev., 2010, 39, 1996.
14 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem.
Rev., 1997, 97, 1515.
15 C. J. Chang and S. J. Lippard, Met. Ions Life Sci., 2006, 1, 321.
16 M. Fernandez-Suarez and A. Y. Ting, Nat. Rev. Mol. Cell Biol.,
´ ´
2008, 9, 929.
17 E. Tomat, E. M. Nolan, J. Jaworski and S. J. Lippard, J. Am.
Chem. Soc., 2008, 130, 15776.
18 G. Masanta, C. S. Lim, H. J. Kim, J. H. Han, H. M. Kim and
B. R. Cho, J. Am. Chem. Soc., 2011, 133, 5698.
19 P. J. Dittmer, J. G. Miranda, J. A. Gorski and A. E. Palmer,
J. Biol. Chem., 2009, 284, 16289.
20 J. L. Vinkenborg, T. J. Nicolson, E. A. Bellomo, M. S. Koay,
G. A. Rutter and M. Merkx, Nat. Methods, 2009, 6, 737.
21 Y. Qin, P. J. Dittmer, J. G. Park, K. B. Jansen and A. E. Palmer,
Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 7351.
22 S. L. Sensi, D. Ton-That, J. H. Weiss, A. Rothe and K. R. Gee,
Cell Calcium, 2003, 34, 281.
The ability of indicator 5 to report mitochondrial zinc(II)
variation is demonstrated in Fig. 5. Upon excited at 405 nm,
the addition of supplemental zinc(II) in the growth media
(DMEM) leads to an increase in intramolecular fluorescence
of 5 that largely localizes in mitochondria. The addition of
compound 5 to the group of few synthetic indicators that
target mitochondrial zinc(II)17,18,22 shall aid the characterization
of mitochondrial zinc(II) which is intimately correlated to the
chemistry of reactive oxygen species (ROS).36
23 K. Kiyose, H. Kojima, Y. Urano and T. Nagano, J. Am. Chem.
Soc., 2006, 128, 6548.
24 B. Tang, H. Huang, K. Xu, L. Tong, G. Yang, X. Liu and L. An,
Chem. Commun., 2006, 3609–3611.
25 S. Atilgan, T. Ozdemir and E. U. Akkaya, Org. Lett., 2008,
10, 4065.
26 L. Xue, C. Liu and H. Jiang, Chem. Commun., 2009, 1061.
27 P. Du and S. J. Lippard, Inorg. Chem., 2010, 49, 10753.
28 X. Lu, W. Zhu, Y. Xie, X. Li, Y. Gao, F. Li and H. Tian,
Chem.–Eur. J., 2010, 16, 8355.
29 M. P. Murphy and R. A. J. Smith, Annu. Rev. Pharmacol., 2007, 47, 629.
30 B. C. Dickinson and C. J. Chang, J. Am. Chem. Soc., 2008,
130, 9638.
In summary, the conversion of a red-emitting fluorophore
to a zinc(II)-responding indicator using a FRET-based strategy
is demonstrated. The diamino-substituted NDI dye, which has
not drawn much attention in intracellular applications,28 performs
well as the fluorophore in indicator 5. In addition to red-emitting,
31 A. H. Younes, L. Zhang, R. J. Clark and L. Zhu, J. Org. Chem.,
2009, 74, 8761.
32 F. Wurthner, S. Ahmed, C. Thalacker and T. Debaerdemaeker,
¨
Chem.–Eur. J., 2002, 8, 4742.
33 R. J. Wandell, A. H. Younes and L. Zhu, New J. Chem., 2010,
34, 2176.
34 C. Thalacker, C. Roger and F. Wurthner, J. Org. Chem., 2006,
¨
¨
71, 8098.
35 P. Carol, S. Sreejith and A. Ajayaghosh, Chem.–Asian J., 2007,
2, 338.
36 S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee,
L. K. Kaczmarek and J. H. Weiss, Proc. Natl. Acad. Sci. U. S. A.,
2003, 100, 6157.
Fig. 5 Fluorescence images of HeLa (S3) cells incubated with compound
5 (1.8 mM). (A) No zinc(II) added, and (B) in the presence of 50 mM ZnCl2.
A 405 nm diode laser line was used for excitation. lem 580–680 nm. Scale
bar: 10 mm. The DIC images are included in Fig. S16, ESI.w
c
11732 Chem. Commun., 2011, 47, 11730–11732
This journal is The Royal Society of Chemistry 2011