Additionally, the present gels have a significant potential for
further development and a range of applications are envisaged
in the near future. Based on preliminary computational studies
on their HOMO–LUMO gap, these materials have promising
properties to act as n-type semiconductors. Several studies are
currently ongoing in our laboratories and in collaboration with
other groups in this regard.
Acknowledgements
Financial support by Ministerio de Educacio´n y Ciencia de
Espan˜a (SAF2006-06720) and Ministerio de Ciencia e Innovacio´n
(MCI, CTQ2008-06017/BQU) is gratefully acknowledged. D.G.V.
thanks Gobierno de Canarias for a predoctoral contract. RL
gratefully acknowledges Ministerio de Ciencia e Innovacion,
Gobierno de Espan˜a for the concession of a Ramon y Cajal
contract (ref. RYC2009-04199) and funding under project P10-
FQM-6711 from Consejeria de Ciencia e Innovacion, Junta de
Andalucia.
Notes and references
1 (a) Molecular Gels: Materials with Self-Assembled Fibrillar Networks,
ed. R. G. Weiss and P. Terech, Springer, Heidelberg, 2006; (b) A. R.
Hirst, D. K. Smith, M. C. Feiters and H. P. M. Geurts, Chem.–Eur.
J., 2004, 10, 5901; (c) A. L. Estroff and A. D. Hamilton, Chem. Rev.,
2004, 104, 1201; (d) P. Terech and R. G. Weiss, Chem. Rev., 1997, 97,
3133; (e) K. Yoza, N. Amanokura, Y. Ono, T. Akao, H. Shinomori,
M. Takeuchi, S. Shinkai and D. N. Reinhoudt, Chem.–Eur. J., 1999, 5,
2722.
2 M. George and R. G. Weiss, Acc. Chem. Res., 2006, 39, 489.
3 M. Zinic, F. Vo¨gtle and F. Fages, Top. Curr. Chem., 2005, 256, 39 (Low
Molecular Mass Gelators).
4 (a) D. G. Vela´zquez, D. D. D´ıaz, A. G. Ravelo and J. J. Marrero-Tellado,
Eur. J. Org. Chem., 2007, 11, 1841; (b) D. D D´ıaz, D. G. Vela´zquez, A.
G. Ravelo and J. J. Marrero-Tellado, Tetrahedron Lett., 2008, 49, 1340;
(c) D. G. Vela´zquez, D. D. D´ıaz, A. G. Ravelo and J. J. Marrero-Tellado,
J. Am. Chem. Soc, 2008, 130, 7967.
5 (a) F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. J.
Schenning, Chem. Rev., 2005, 105, 1491; (b) T. Ishi-i and S. Shinkai,
Top. Curr. Chem., 2005, 258, 119.
6 (a) K. Takazawa, Y. Kitahama, Y. Kimura and G. Kido, Nano Lett.,
2005, 5, 1293; (b) Q. Tang, H. Li, Y. Liu and W. Hu, J. Am. Chem. Soc.,
2006, 128, 14634; (c) A. K. Wanekaya, W. Chen, N. V. Myung and A.
Mulchandani, Electroanalysis, 2006, 18, 533; (d) A. P. H. J. Schenning
and E. W. Meijer, Chem. Commun., 2005, 3245.
7 (a) D. J. Abdallah and R. G. Weiss, Adv. Mater., 2000, 12, 1237; (b) S.
Shinkai and K. Murata, J. Mater. Chem., 1998, 8, 485; (c) N. M.
Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821; (d) M. George
and R. G. Weiss, Acc. Chem. Res., 2006, 39, 489; (e) O. Gronwald and
S. Shinkai, Chem.–Eur. J., 2001, 7, 4328.
8 (a) S. Yagai, Y. Monma, N. Kawauchi, T. Karatsu and A. Kitamura,
Org. Lett., 2007, 9, 1137; (b) H. Y. Lee, S. R. Nam and J.-I. Hong,
J. Am. Chem. Soc., 2007, 129, 1040; (c) N. Fujita, Y. Sakamoto, M.
Shirakawa, M. Ojima, A. Fujii, M. Ozaki and S. Shinkai, J. Am. Chem.
Soc., 2007, 129, 4134; (d) X.-Q. Li, V. Stepanenko, Z. Chen, P. Prins, L.
D. A. Siebbeles and F. Wu¨rthner, Chem. Commun., 2006, 3871.
9 Y.-C. Lin, B. Kachar and R. G. Weiss, J. Am. Chem. Soc., 1989, 111,
5542.
10 K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori,
F. Ohseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc., 1994, 116, 6664.
11 Nomenclature for AL-type gelators according to M. George and R. G.
Weiss, Acc. Chem. Res., 2006, 39, 489–497.
Fig. 5 UV–vis spectra of compound 1; (A) in solution and gel-state
at different concentrations (10-5–10-3 M) and (B) in dilute solutions
(10-5 mM) of solvents with different polarity (DMF, DMSO, acetoni-
trile-ACN, and H2O) at 25 ◦C.
Table 2 Rheological data for gelsa of 1 and 2 in DMSO and toluene,
respectively
c
d
Compound
Solvent
cgcb (wt%)
G¢ (¥103 Pa)
G¢¢ (¥103 Pa)
1
2
DMSO
Toluene
0.50
1.20
10 0.6
70 1.3
1.0 0.80
7.2 0.90
a Gels◦(1 mL) were prepared upon warming the cool isotropic solutions
to 25 C. b Critical gelation concentration. c G¢ = average storage modulus.
d G¢¢ = average loss modulus.
of their stable organogels, which was studied by FT-IR, DSC,
TEM, SEM and AFM images. A variety of solvents can be
gelated, providing robust and translucent gels stable for months.
Furthermore, very subtle structural changes were shown to
potentially have a dramatic effect on supramolecular aggregation.
The results obtained from spectroscopic and microscopic
techniques reveal the occurrence of self-assembly and auto-
aggregation within the gel, induced by the terminal groups present
in the periphery of the HATNA core. With this surprising
discovery, studies are ongoing in our laboratories to design new
LMWOGs based on this core for fine-tuning the range of solvents
to be gelated and determine the influence of the terminal groups
in the self-assembly and in the gel formation.
12 L. Chen, J. Kim, T. Ishizuka, Y. Honsho, A. Saeki, S. Seki, H. Ihee and
D. Jiang, J. Am. Chem. Soc., 2009, 131, 7287–7292.
´
13 D. G. Vela´zquez, A. G. Orive, R. Luque, A. H. Creus and A. G. Ravelo,
Chem. Eur. J., 2011 submitted.
14 G. Marzaro, A. Guiotto and A. Chilin, Green Chem., 2009, 11, 774–776.
15 K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori,
F. Ohseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc., 1994, 116, 6664.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 6524–6527 | 6527
©