7.13 (t, J = 8.0 Hz, 6H, Ph-CH), 7.24 (t, J = 8.0 Hz, 3H, Ph-
CH), 7.40 (d, J = 8.0 Hz, 6H, Ph-CH). 13C NMR (acetone-d6):
d 20.93 (ArCB-CH3), 25.37 (ArCB-CH3), 70.86 (crown), 86.63 (CB-
C), 89.47 (CB-C), 125.39, 129.00, 129.28, 129.61, 130.08, 130.81,
131.44, 131.63, 141.83, 145.14 (B–CMes). 11B NMR (THF-d8): d
+1.3 (br s, B-F), -5.0 (br s, 6B, CB-B), -12.8 (br s, 24B, CB-B).
19F NMR (THF-d8): d -173. Anal. Calcd for C60H93B31FKO6: C,
55.28; H, 7.19. Found: C, 55.26; H, 7.35.
Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391–1434 and references
therein.
3 W. E. Piers and T. Chivers, Chem. Soc. Rev., 1997, 26, 345–354.
4 D. W. Stephan, Chem. Commun., 2010, 46, 8526–8533; M. Ullrich, A.
J. Lough and D. W. Stephan, Organometallics, 2010, 29, 3647–3654; M.
Ullrich, A. J. Lough and D. W. Stephan, J. Am. Chem. Soc., 2009, 131,
52–53; S. J. Geier, T. M. Gilbert and D. W. Stephan, J. Am. Chem. Soc.,
2008, 130, 12632–12633; D. W. Stephan, Org. Biomol. Chem., 2008, 6,
1535–1539 and references cited therein; G. C. Welch and D. W. Stephan,
J. Am. Chem. Soc., 2007, 129, 1880–1881; P. A. Chase, G. C. Welch, T.
Jurca and D. W. Stephan, Angew. Chem., Int. Ed., 2007, 46, 8050–8053;
G. C. Welch, R. R. S. Juan, J. D. Masuda and D. W. Stephan, Science,
2006, 314, 1124–1126.
X-ray structure determination
5 G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D. Masuda, P. Wei
and D. W. Stephan, Dalton Trans., 2007, 3407–3414.
6 Y. Kim, H.-S. Huh, M. H. Lee, I. L. Lenov, H. Zhao and F. P. Gabba¨ı,
Chem.–Eur. J., 2011, 17, 2057–2062.
A specimen of suitable size and quality was coated with Paratone
oil and mounted onto a glass capillary. The crystallographic
measurements were performed on a Bruker SMART Apex II
CCD area detector diffractometer with graphite-monochromated
7 M. H. Park, T. Kim, J. O. Huh, Y. Do and M. H. Lee, Polymer, 2011,
52, 1510–1514; C. R. Wade, A. E. J. Broomsgrove, S. Aldridge and F. P.
Gabba¨ı, Chem. Rev., 2010, 110, 3958–3984; F. Ja¨kle, Chem. Rev., 2010,
110, 3985–4022; W.-J. Xu, S.-J. Liu, X.-Y. Zhao, S. Sun, S. Cheng, T.-C.
Ma, H.-B. Sun, Q. Zhao and W. Huang, Chem.–Eur. J., 2010, 16, 7125–
7133; M. Cametti and K. Rissanen, Chem. Commun., 2009, 2809–2829;
T. Agou, M. Sekine, J. Kobayashi and T. Kawashima, Chem. Commun.,
2009, 1894–1896; K. Parab and F. Ja¨kle, Macromolecules, 2009, 42,
4002–4007; C. L. Dorsey, P. Jewula, T. W. Hudnall, J. D. Hoefelmeyer,
T. J. Taylor, N. R. Honesty, C.-W. Chiu, M. Schulte and F. P. Gabba¨ı,
Dalton Trans., 2008, 4442–4450; Q. Zhao, F. Li, S. Liu, M. Yu, Z. Liu,
T. Yi and C. Huang, Inorg. Chem., 2008, 47, 9256–9264; Y. You and
S. Y. Park, Adv. Mater., 2008, 20, 3820–3826; A. Kawachi, A. Tani,
J. Shimada and Y. Yamamoto, J. Am. Chem. Soc., 2008, 130, 4222–
4223; R. Boshra, K. Venkatasubbaiah, A. Doshi, R. A. Lalancette, L.
Kakalis and F. Ja¨kle, Inorg. Chem., 2007, 46, 10174–10186; Y. Qin and
F. Ja¨kle, J. Inorg. Organomet. Polym. Mater., 2007, 17, 149–157; D.-R.
Bai, X.-Y. Liu and S. Wang, Chem.–Eur. J., 2007, 13, 5713–5723; X. Y.
Liu, D. R. Bai and S. Wang, Angew. Chem., Int. Ed., 2006, 45, 5475–
5478; F. Ja¨kle, Coord. Chem. Rev., 2006, 250, 1107–1121 and references
cited therein; T. W. Hudnall, M. Melaimi and F. P. Gabba¨ı, Org. Lett.,
2006, 8, 2747–2749; Z. Q. Liu, M. Shi, F. Y. Li, Q. Fang, Z. H. Chen,
T. Yi and C. H. Huang, Org. Lett., 2005, 7, 5481–5484; Y. Kubo, M.
Yamamoto, M. Ikeda, M. Takeuchi, S. Shinkai, S. Yamaguchi and K.
Tamao, Angew. Chem., Int. Ed., 2003, 42, 2036–2040; S. Yamaguchi, S.
Akiyama and K. Tamao, J. Am. Chem. Soc., 2001, 123, 11372–11375.
8 C. R. Wade and F. P. Gabbai, Inorg. Chem., 2010, 49, 714–720; T.
W. Hudnall, C.-W. Chiu and F. P. Gabba¨ı, Acc. Chem. Res., 2009, 42,
388–397.
˚
Mo-Ka radiation (l = 0.71073 A). The structure was solved by
direct methods and all nonhydrogen atoms were subjected to
anisotropic refinement by full-matrix least-squares on F2 using
the SHELXTL/PC package. Hydrogen atoms were placed at their
geometrically calculated positions and were refined riding on the
corresponding carbon atoms with isotropic thermal parameters.
The detailed crystallographic data are given in Table 1.
UV-vis titration experiments
A solution of 2 (3.0 mL, 2.45 ¥ 10-5 M, THF/H2O 9/1 v/v)
was titrated with incremental amounts of fluoride anion by the
addition of TBAF solution (1.58 ¥ 10-2 M in THF). The absorption
was monitored at lmax = 324 nm. In fitting the experimental points,
a correction was applied to account for the absorption of [2F]- at
324 nm. The experimental data obtained were fitted to a 1 : 1
binding isotherm (Fig. 3).
Cyclic voltammetry
Cyclic voltammetry measurements were carried out in DMSO
with a three-electrode cell configuration consisting of platinum
working and counter electrodes and a Ag/AgNO3 (0.01 M
in CH3CN) reference electrode at room temperature. Tetra-n-
butylammonium hexafluorophosphate (0.1 M) was used as the
supporting electrolyte. The reduction potentials were recorded at
a scan rate of 50 mV s-1 and are reported with reference to the
ferrocene/ferrocenium (Fc/Fc+) redox couple.
9 Y. Sun and S. Wang, Inorg. Chem., 2009, 48, 3755–3767.
10 J. O. Huh, Y. Do and M. H. Lee, Organometallics, 2008, 27, 1022–1025;
K. Parab, K. Venkatasubbaiah and F. Ja¨kle, J. Am. Chem. Soc., 2006,
128, 12879–12885; S. Sole´ and F. P. Gabba¨ı, Chem. Commun., 2004,
1284–1285.
11 M. Mela¨ımi and F. P. Gabba¨ı, J. Am. Chem. Soc., 2005, 127, 9680–9681.
12 S. A. Cummings, M. Iimura, C. J. Harlan, R. J. Kwaan, I. V. Trieu, J. R.
Norton, B. M. Bridgewater, F. Ja¨kle, A. Sundararaman and M. Tilset,
Organometallics, 2006, 25, 1565–1568.
13 A. Sundararaman, K. Venkatasubbaiah, M. Victor, L. N. Zakharov, A.
L. Rheingold and F. Ja¨kle, J. Am. Chem. Soc., 2006, 128, 16554–16565.
14 Y.-L. Rao and S. Wang, Inorg. Chem., 2009, 48, 7698–7713; Y. Sun, N.
Ross, S.-B. Zhao, K. Huszarik, W.-L. Jia, R.-Y. Wang, D. Macartney
and S. Wang, J. Am. Chem. Soc., 2007, 129, 7510–7511.
15 A. E. J. Broomsgrove, D. A. Addy, A. Di Paolo, I. R. Morgan, C.
Bresner, V. Chislett, I. A. Fallis, A. L. Thompson, D. Vidovic and S.
Aldridge, Inorg. Chem., 2010, 49, 157–173; T. Matsumoto, C. R. Wade
and F. P. Gabba¨ı, Organometallics, 2010, 29, 5490–5495; Y. Kim, H.
Zhao and F. P. Gabba¨ı, Angew. Chem., Int. Ed., 2009, 48, 4957–4960;
C. R. Wade and F. P. Gabba¨ı, Dalton Trans., 2009, 9169–9175; T. W.
Hudnall, Y.-M. Kim, M. W. P. Bebbington, D. Bourissou and F. P.
Gabba¨ı, J. Am. Chem. Soc., 2008, 130, 10890–10891; C.-W. Chiu and F.
P. Gabba¨ı, Dalton Trans., 2008, 814–817; C.-W. Chiu and F. P. Gabba¨ı,
J. Am. Chem. Soc., 2006, 128, 14248–14249.
Acknowledgements
Financial supports from the National Research Foundation of
Korea (No. 2010-0008264 for Y. Do and No. 2010-0007796 for
M.H. Lee) and the Priority Research Centers Program of the NRF
(No. 2009-0093818 for M.H. Lee) funded by the Korea Ministry of
Education, Science and Technology are gratefully acknowledged.
Notes and references
1 J. A. S. Roberts, M.-C. Chen, A. M. Seyam, L. Li, C. Zuccaccia, N. G.
Stahl and T. J. Marks, J. Am. Chem. Soc., 2007, 129, 12713–12733; G.
Erker, Dalton Trans., 2005, 1883–1890; W. E. Piers, Adv. Organomet.
Chem., 2005, 52, 1–76; V. C. Williams, G. J. Irvine, W. E. Piers, Z. Li, S.
Collins, W. Clegg, M. R. J. Elsegood and T. B. Marder, Organometallics,
2000, 19, 1619–1621.
16 C.-W. Chiu, Y. Kim and F. P. Gabbai, J. Am. Chem. Soc., 2009, 131,
60–61.
17 Y. Kim and F. P. Gabba¨ı, J. Am. Chem. Soc., 2009, 131, 3363–3369.
18 T. W. Hudnall and F. P. Gabba¨ı, J. Am. Chem. Soc., 2007, 129, 11978–
11986.
2 M.-C. Chen, J. A. S. Roberts, A. M. Seyam, L. Li, C. Zuccaccia, N. G.
Stahl and T. J. Marks, Organometallics, 2006, 25, 2833–2850; E. Y. X.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 11758–11764 | 11763
©