Journal of the American Chemical Society
COMMUNICATION
(5) For selected examples, see: (a) Du, J.; Yoon, T. P. J. Am. Chem.
Soc. 2009, 131, 14604–14605. (b) Fedorova, O.; Federov, Y. V.;
Gulakova, E.; Schepel, N.; Alfimov, M.; Goli, U.; Saltiel, J. Photochem.
Photobiol. Sci. 2007, 6, 1097–1105.
(6) For examples of stoichiometric CꢀH activation of cyclobutanes,
see: (a) Periana, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1986,
108, 7332–7346. (b) Wick, D. D.; Northcutt, T. O.; Lachicotte, R. J.;
Jones, W. D. Organometallics 1998, 17, 4484–4492. (c) Simms, B. L.;
Ibers, J. A. J. Organomet. Chem. 1987, 330, 279–289.
(7) For selected reviews of CꢀH functionalization in total
synthesis, see: (a) Taber, D. F.; Stiriba, S. E. Chem. Eur. J. 1998,
4, 990–992. (b) Godula, K.; Sames, D. Science 2006, 312, 67–72. (c)
Davies, H. M.; Manning, J. R. Nature 2008, 451, 417–424. (d) Ishihara,
Y.; Baran, P. S. Synlett 2010, 12, 1733–1745. (e) Gutekunst, W. R.;
Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976–1991. (f) McMurray, L.;
O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885–1898.(g) Br€uckl,
T.; Baxter, R. D.; Ishihara, Y.; Baran, P. S. Acc. Chem. Res. 2011, DOI:
10.1021/ar200194b. (h) For a recent example, see: Wang, D.-H.; Yu,
J.-Q. J. Am. Chem. Soc. 2011, 133, 5767–5769.
(17) When more forcing conditions were employed (105 °C), small
amounts of a tentatively assigned tetraarylated byproduct could be
observed by LC-MS and 1H NMR of the crude reaction mixture.
(18) Evans, D. A.; Carter, P. H.; Dinsmore, C. J.; Barrow, J. C.; Katz,
J. L.; Kung, D. W. Tetrahedron Lett. 1997, 38, 4535–4538.
(19) 4-Å molecular sieves act as a neutral acid scavenger: (a)
Weinstock, L. M.; Karady, S.; Roberts, F. E.; Hoinowski, A. M.; Brenner,
G. S.; Lee, T. B. K.; Lumma, W. C.; Sletzinger, M. Tetrahedron Lett. 1975,
46, 3979–3982. (b) Padwa, A.; Price, A. J. Org. Chem. 1995, 60,
6258–6259.
(20) Mascitti, V.; Corey, E. J. Tetrahedron Lett. 2006, 47, 5879–5882.
(21) Nicolaou, K. C.; Sarlah, D.; Shaw, D. M. Angew. Chem., Int. Ed.
2007, 46, 4708–4711.
(22) The low yield is the result of competitive anhydride generation
during formation of the bis-acid chloride.
(8) For examples of dimeric cyclobutane total synthesis, see: (a)
Ichikawa, M.; Takahashi, M.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc.
2004, 126, 16553–16558. (b) Tsai, A. S.; Bergman, R. G.; Ellman, J. A.
J. Am. Chem. Soc. 2008, 130, 6316–6317. (c) Zhang, F.; Jia, Y. Tetrahedron
2009, 65, 6840–6843. (d) Takahashi, M.; Ichikawa, M.; Aoyagi, S.;
Kibayashi, C. Tetrahedron Lett. 2005, 46, 57–59. (e) Birman, V. B.; Jiang,
X.-T. Org. Lett. 2004, 6, 2369–2371. (f) O’Malley, D. P.; Li, K.; Maue, M.;
Zografos, A. L.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 4762–4775.
(9) A conceptually similar approach to cyclobutane functionalization
using directed magnesiation has been reported, but employs harsh
conditions and is limited in scope: (a) Eaton, P. E.; Zhang, M.-X.;
Komiya, N.; Yang, C.-G.;Steele, I.; Gilardi, R. Synlett2003, 9, 1275–1278.
(b) Zhang, M.-X.; Eaton, P. E. Angew. Chem., Int. Ed. 2002, 41,
2169–2171.
(10) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 13154–13155. (b) Shabashov, D.; Daugulis, O. J. Am. Chem.
Soc. 2010, 132, 3965–3972. For other examples of intermolecular
arylation of unactivated sp3 CꢀH bonds, see: (c) Reddy, B. V. S.; Reddy,
L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391–3394. (d) He, G.; Chen, G.
Angew. Chem., Int. Ed. 2011, 50, 5192–5196. (e) Barder, T. E.; Walker,
S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005,
127, 4685–4696. (f) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.;
Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007,
129, 3510–3511. (g) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am.
Chem. Soc. 2008, 130, 7190–7191. (h) Wasa, M.; Engle, K. M.; Yu, J.-Q.
J. Am. Chem. Soc. 2009, 131, 9886–9887. For an application in total
synthesis, see: (i) Feng, Y.; Chen, G. Angew. Chem., Int. Ed. 2010,
49, 958–961.
(11) (a) Allinger, N. L.; Tushaus, N. L. J. Am. Chem. Soc. 1965,
30, 1945–1951. (b) Pecquet, P.; Huet, F.; Legraverend, M.; Bisagni, E.
Heterocycles 1992, 34, 739–745. (c) Bucholtz, K. M.; Gareiss, P. C.; Tajc,
S. G.; Miller, B. L. Org. Biomol. Chem. 2006, 4, 3973–3979.
(12) (a) Frꢀebault, F.; Luparia, M.; Oliveira, M. T.; Goddard, R.;
Maulide, N. Angew. Chem., Int. Ed. 2010, 49, 5672–5676. (b) Corey, E. J.;
Streith, J. J. Am. Chem. Soc. 1964, 86, 950–951. (c) Javaheripour, H.;
Neckers, D. C. J. Am. Chem. Soc. 1977, 42, 1844–1850.
(13) Commercially available or prepared in two steps from malic
acid ($55/kg, Sigma): Ashworth, I. W.; Bowden, M. C.; Dembofsky, B.;
Levin, D.; Moss, W.; Robinson, E.; Szczur, N.; Virica, J. Org. Process Res.
Dev. 2003, 7, 74–81.
(14) 2-Aminothioanisole is used instead of 8-aminoquinoline since
the former does not contain a basic nitrogen and can be hydrolyzed
under milder conditions (see ref 10b).
(15) For studies on the role of pivalic acid in CꢀH cleavage, see: (a)
Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2007, 129,
14570–14571. (b) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006,
128, 16496–16497.
(16) The variable yield is the result of the instability of the dianion,
coupled with a slow second deprotonation at low temperatures.
19079
dx.doi.org/10.1021/ja209205x |J. Am. Chem. Soc. 2011, 133, 19076–19079