6766
X. Zhang et al. / Tetrahedron Letters 52 (2011) 6763–6766
Heterocycl. Chem. 2008, 147–192; (d) Wee, A. G. H. Curr. Org. Synth. 2006, 3,
499–555; (e) Singh, G. S.; Mdee, L. K. Curr. Org. Chem. 2003, 7, 1821–1839; (f)
reaction set-up, vide infra, carbene formation and insertion occurred in high
yields.
Doyle, M. P.; McKervey, M. A. Chem. Commun. 1997, 983–989.
13. For recent reviews on carbene insertion into C–H bonds, see: (a) Doyle, M. P.;
Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704–724; (b) Davies, H.
M. L.; Dick, A. R. Top. Curr. Chem. 2010, 292, 303–345; (c) Slattery, C. N.; Ford,
A.; Maguire, A. R. Tetrahedron 2010, 66, 6681–6705; (d) Davies, H. M. L.; Loe, O.
Synthesis 2004, 2595–2608; (e) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev.
2003, 103, 2861–2903; (f) Sulikowski, G. A.; Cha, K. L.; Sulikowski, M. M.
Tetrahedron: Asymmetry 1998, 9, 3145–3169.
26. (a) Jones, G. I. L.; Owen, N. L. J. Mol. Struct. 1973, 18, 1–32; (b) Pinkus, A. G.; Lin,
E. Y. J. Mol. Struct. 1973, 24, 9–26.
27. Chiral ligands for copper complexes, see: L1 (a) Evans, D. A.; Kozlowski, M. C.;
Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem.
Soc. 1999, 121, 669–685; L2: (b) Evans, D. A.; Woerpel, K. A.; Hinman, M. M.;
Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726–728; L3: (c) Lowenthal, R. E.; Abiko,
A.; Masamune, S. Tetrahedron Lett. 1990, 31, 6005–6008; L4 and L5: (d) Zhang,
X.; Lin, W.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C.
Tetrahedron Lett. 2002, 43, 1535–1537; (e) Zhang, X.-M.; Zhang, H.-L.; Lin, W.-
Q.; Gong, L.-Z.; Mi, A.-Q.; Cui, X.; Jiang, Y.-Z.; Yu, K.-B. J. Org. Chem. 2003, 68,
4322–4329.
14. Chiu, P.; Zhang, X.; Ko, R. Y. Y. Tetrahedron Lett. 2004, 45, 1531–1534.
15. The ketoester intermediates were not isolated, but were subjected to Krapcho
decarboxylation to yield 3a or 3b in one-pot.
16. Rh2(S-BPTTL)4: (a) Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.;
Umeda, C.; Watanabe, N.; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417–
1418; Rh2(R-DOSP)4: (b) Davies, H. M. L. Aldrichim. Acta 1997, 30, 107–114.
17. The syntheses of substrates 2b–d are similar to the synthesis of 2a reported
previously, see Ref. 14 Detailed experimental procedures can be found in the
Supplementary data of this Letter.
18. Hashimoto, S.; Watanabe, N.; Sato, T.; Shiro, M.; Ikegami, S. Tetrahedron Lett.
1993, 34, 5109–5112.
19. Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693–2698.
20. Treu, J.; Hoffmann, H. M. R. J. Org. Chem. 1997, 62, 4650–4652.
21. Hyatt, J. A.; Feldman, P. L.; Clemens, R. J. J. Org. Chem. 1984, 49, 5105–5108.
22. Doyle, M. P.; Davies, S. B.; May, E. J. J. Org. Chem. 2001, 66, 8112–8119.
28. Lim, H.-J.; Sulikowski, G. A. J. Org. Chem. 1995, 60, 2326–2327.
29. Athough Cu(OTf)2 has been used in the preparation of the complex, Cu(II) is
reduced to Cu(I) in the presence of diazo compounds, which is the generally
accepted reactive species.
30. A methine C–H bond is more reactive than a methylene C–H bond towards
metal carbene-mediated C–H bond insertion, see: Taber, D. F.; Ruckle, R. E. J.
Am. Chem. Soc. 1986, 108, 7686–7693.
31. For examples of carbene insertion into the
Hrytsak, M.; Durst, T. Heterocycles 1987, 26, 2393–2409.
typical desymmetrization procedure: solution of Cu(OTf)2 (0.7 mg,
a position of a silyl group, see:
32.
A
A
0.002 mmol) and L3 (0.006 mmol) in CHCl3 (1.0 mL) was stirred at room
temperature for 30 min. A solution of 9b (0.0310 g, 0.100 mmol) in CHCl3
(1.0 mL) was added. The resulting mixture was stirred at room temperature until
all 9b was consumed, as indicated by TLC. The solvent was removed in vacuo. The
residue was purified by flash chromatography (10% EtOAc in hexane) to afford
10b as a colorless oil. 10b: Rf (20% EtOAc in hexane): 0.46; IR (CH2Cl2): 2957,
23. For examples of metal carbene-mediated dimerization of
a-diazocarbonyl
compounds, see: (a) Zotto, A. D.; Baratta, W.; Verardo, G.; Rigo, P. Eur. J. Org.
Chem. 2000, 2795–2801; (b) Wenkert, E.; Guo, M.; Pizzo, F.; Ramachandran, K.
Helv. Chim. Acta 1987, 70, 1429–1438; (c) Mateos, A. F.; Barba, A. M. L. J. Org.
Chem. 1995, 60, 3580–3585; (d) Rosenfeld, M. J.; Shankar, R.; Shechter, H. J. Org.
Chem. 1988, 53, 2699–2705.
2914, 2878, 1745, 1463 cmÀ1 1H NMR (300 MHz, CDCl3) d 4.36–4.32 (m, 1H),
;
4.22 (d, J = 7.5 Hz, 1H), 2.65–2.46 (m, 2H), 2.43–2.41 (m, 2H), 2.36–2.20 (m, 3H),
2.03–1.88 (m, 2H), 1.75 (d, J = 2.9 Hz, 2H), 0.97 (t, J = 7.6 Hz, 9H), 0.615 (q,
J = 7.6 Hz, 6H) ppm; 13C NMR (75 MHz, CDCl3) d 214.3, 75.4, 74.9, 55.9, 49.1, 41.7,
41.5, 28.0, 27.4, 7.1, 6.5 ppm; EI-MS (20 eV) m/z 296 (M+, 1), 267 (100), 249 (11),
199 (13); EI-HRMS m/z calcd for C16H28SiO3 (M+): 296.
24. For a review on metal carbene-mediated O–H insertion, see: Miller, D. J.;
Moody, C. J. Tetrahedron 1995, 51, 10811–10843.
25. These results are not due to our inability to exclude moisture rigorously under
the reaction conditions. Using other substrates with a similar handling and