6340
M. Eskici et al. / Tetrahedron Letters 52 (2011) 6336–6341
Procedure B
NHBn
-10 °C
77%
NHBn
Ph
O
O
Bn
S
N
O
15
16
5:1
Ph
Li
5
Procedure B
14
-78 °C
15
75%
Scheme 4. Reaction of 1,3-cyclic sulfamidate 14 with phenylacetylide 5.
the literature value (½a D20
ꢁ
ꢀ15.9 (c 1.11, CHCl3)).26 Derivatization of
2. Hu, X. E. Tetrahedron 2004, 60, 2701.
3. Moss, T. A.; Alonso, B.; Fenwick, D. R.; Dixon, D. J. Angew. Chem. 2010, 122, 578.
4. Baig, R. B. N.; Kanimozhi, C. K.; Sudhir, V. S.; Chandrasekaran, S. Synlett 2009,
1227.
5. For examples of azetidinium ions as electrophiles for carbon nucleophiles, see:
Couty, F.; David, O.; Druoilat, B. Tetrahedron Lett. 2007, 48, 9180.
6. Ni, C.; Liu, J.; Zhang, L.; Hu, J. Angew. Chem., Int. Ed. 2007, 46, 786.
7. (a) Jamieson, A. G.; Boutard, N.; Beauregard, K.; Bodas, M. S.; Ong, H.; Quiniou,
C.; Chemtob, S.; Lubell, W. D. J. Am. Chem. Soc. 2009, 131, 7917; (b) Cochran, B.
M.; Michael, F. E. Org. Lett. 2008, 10, 329; (c) Khanjin, N. A.; Hesse, M. Helv.
Chim. Acta 2003, 86, 2028; (d) Kim, B. M.; So, S. M. Tetrahedron Lett. 1999, 40,
7687; (e) Kim, B. M.; So, S. M. Tetrahedron Lett. 1998, 39, 5381.
saturated amines 12 and 13 with (+)-MTPA27 to give the
corresponding Mosher amides showed that there was a single dia-
stereoisomer present in each case by analysis of 1H NMR spectra.
This result rules out any racemization of the stereogenic centers
occurring during the alkylation reactions. Observation of the
diastereomerically pure Mosher amide derivative of 13 indicates
clean inversion of the stereochemistry during the alkylation of 9f
with 5, which is frequently observed in the literature.13
We were also interested in the reactivity of 1,3-cyclic sulfami-
dates in the alkylation reaction. Methyl substituted 14 as the only
studied 1,3-cyclic sulfamidate exhibited considerably lower reac-
tivity toward 5 compared with alanine-derived 9a (Scheme 4).
Using procedure A, sulfamidate 14 failed to react with 5 even over
a longer reaction time (48 h). The use of HMPA nevertheless
brought about an acceptable degree of reactivity, and the corre-
8. (a) Jiménez-Osés, G.; Avenoza, A.; Busto, J. H.; Rodriguez, F.; Peregrina, J. M.
Chem. Eur. J. 2009, 15, 9810; (b) Okuda, M.; Tomioka, K. Tetrahedron Lett. 1994,
35, 4585.
9. (a) Avenoza, A.; Busto, J. H.; Jiménez-Osés, G.; Peregrina, J. J. Org. Chem. 2006,
71, 1692; (b) Avenoza, A.; Busto, J. H.; Jiménez-Osés, G.; Peregrina, J. Org. Lett.
2006, 8, 2855; (c) Cohen, S.; Halcomb, R. L. J. Am. Chem. Soc. 2002, 124, 2534; (d)
Cohen, S.; Halcomb, R. L. Org. Lett. 2001, 3, 405; (e) Aguilera, B.; Fernández-
Mayoralas, A. J. Org. Chem. 1998, 63, 2719; (f) Aguilera, B.; Fernández-
Mayoralas, A. Chem. Commun. 1996, 127.
10. (a) Guo, R.; Lu, S.; Chen, X.; Tsang, C.-W.; Jia, W.; Sui-Seng, C.; Amoroso, D.;
Abdur-Rashid, A. J. Org. Chem. 2010, 75, 937; (b) Rönnholm, P.; Södergren, M.;
Hilmersson, G. Org. Lett. 2007, 9, 3781.
11. (a) Posakony, J. J.; Tewson, T. J. Synthesis 2002, 766; (b) Posakony, J. J.; Tewson,
T. J. Synthesis 2002, 859; (c) Ok, D.; Fisher, M. H.; Wyvratt, M. J.; Meinke, P. T.
Tetrahedron Lett. 1999, 40, 3831; (d) Van Dort, M. E.; Jung, Y.-W.; Sherman, P.
S.; Kilbourn, M. R.; Weiland, D. M. J. Med. Chem. 1995, 38, 810.
12. For selected examples of more general ring-opening reactions of cyclic
sulfamidates, see: (a) Rujirawanich, J.; Gallagher, T. Org. Lett. 2009, 11, 5494;
(b) Bower, J. F.; Szeto, P.; Gallagher, T. Org. Lett. 2007, 9, 3283; (c) Williams, A.
J.; Chakthong, S.; Gray, D.; Lawrence, R. M.; Gallagher, T. Org. Lett. 2003, 5, 811;
(d) Atfani, M.; Wei, L.; Lubell, W. D. Org. Lett. 2001, 3, 2965; (e) Wei, L.; Lubell,
W. D. Can. J. Chem. 2001, 79, 94; (f) Boulton, L. T.; Stock, H. T.; Raphy, J.;
Horwell, D. C. J. Chem. Soc., Perkin Trans. 1 1999, 1421; (g) White, G. J.; Grast, M.
E. J. Org. Chem. 1991, 56, 3177; (h) Alker, D.; Doyle, K. J.; Harwood, L. M.;
McGregor, A. Tetrahedron: Asymmetry 1990, 1, 877; (i) Baldwin, J. E.; Spivey, A.
C.; Schofield, C. Tedrahedron: Asymmetry 1990, 1, 881.
13. (a) Bower, J. F.; Riis-Johannessen, T.; Szeto, P.; Whitehead, A.; Gallagher, T.
Chem. Commun. 2007, 728; (b) Bower, J. F.; Williams, A. J.; Woodward, H. L.;
Szeto, P.; Lawrence, R. M.; Gallagher, T. Org. Biomol. Chem. 2007, 5, 2636; (c)
Bower, J. F.; Szeto, P.; Gallagher, T. Org. Biomol. Chem. 2007, 5, 143; (d) Bower, J.
F.; Szeto, P.; Gallagher, T. Org. Lett. 2007, 9, 4909; (e) Bower, J. F.; Chakthong
Švenda, J.; Williams, A. J.; Lawrence, R. M.; Szeto, P.; Gallagher, T. Org. Biomol.
Chem. 2006, 4, 1868; (f) Bower, J. F.; Szeto, P.; Gallagher, T. Chem. Commun.
2005, 5793; (g) Bower, J. F.; Švenda, J.; Williams, A. J.; Charmant, J. P. H.;
Lawrence, R. M.; Szeto, P.; Gallagher, T. Org. Lett. 2004, 6, 4727.
sponding reaction of 14 with 5 afforded the desired c-alkynylated
amine 15 along with a by-product. Separation of 15 from the by-
product was not possible by column chromatography. Conversion
of these compounds into the amide or carbamate derivatives did
not facilitate chromatographic separation. The structure of the
by-product was tentatively proposed to be N-benzyl-3-buten-2-
amine (16)28 by analysis of the 1H NMR spectrum of the purified
mixture that could result from the competing elimination path-
way. The ratio of 15/16 was estimated as 5:1 by 1H NMR spectros-
copy and the products were obtained in 77% overall yield.
Fortunately, lowering the reaction temperature to ꢀ78 °C reduced
the amount of 15 to 2–3%.29
In summary, a useful level of reactivity of the cyclic sulfami-
dates toward a range of acetylides has been reported. The ready
availability of cyclic sulfamidates and alkynes coupled with the
reactivity profile provides a practical and efficient entry for the
syntheses of
c- and b- alkynylated amines. Given the array of
versatile functionalities present and the widespread use of amines
in diverse areas of organic synthesis, the alkynylated amines are
valuable compounds for downstream manipulations. Further
exploitation of functionalized alkynylated amines is currently
underway and will be reported elsewhere.
14. (a) Lorion, M.; Agouridas, V.; Couture, A.; Deniau, E.; Grandclaudon, P. Org. Lett.
2010, 12, 1356; (b) Pound, M. K.; Davies, D. L.; Pilkington, M.; de Pina Vaz
Sousa, M.; Wallis, J. D. Tetrahedron Lett. 2002, 43, 1915; (c) Wei, L.; Lubell, W. D.
Org. Lett. 2000, 2, 2595; (d) Stiasny, H. C. Synthesis 1996, 259; (e) Cooper, G. F.;
McCarthy, K. E.; Martin, M. G. Tetrahedron Lett. 1992, 33, 5895. See also
citations in Ref. 12.
Acknowledgments
15. For an unsuccessful attempt concerning the nucleophilic displacement of
carbohydrate-based cyclic sulfamidates with lithium trimethylsilyl acetylide,
see: Aguilera, B.; Fernández-Mayoralas, A.; Jaramillo, C. Tetrahedron 1997, 53,
5893.
16. For a review on the reactivity of cyclic sulfates, see: (a) Lohray, B. B. Synthesis
1992, 1035; (b) Bittman, R.; Byun, H.-S.; He, L. Tetrahedron 2000, 56, 7051.
17. Ding, C.-H.; Dai, L.-X.; Hou, X.-L. Tetrahedron 2005, 61, 9586.
18. Ducracy, P.; Lamotte, H.; Rossue, B. Synthesis 1997, 404.
The authors gratefully acknowledge Celal Bayar University for
financial support through a project (FEF-2009-101) and Pelin
SÖZEN AKTASß for obtaining HRMS.
Supplementary data
19. The terminal alkynes used are commercially available except benzylpropargyl
ether 4i and the orthoester-containing variant 4g. Benzylpropargyl ether 4i
was easily prepared via benzylation of propargylic alcohol. Ethyl
orthopropiolate 4g was synthesized from triethylorthopropionate using
bromination and elimination reactions, see: (a) Stetter, H.; Uerdingen, W.
Synthesis 1973, 207; (b) Bates, R. W.; Maiti, T. B. Synth. Commun. 2003, 33, 633;
(c) Gassman, P. G.; Chavan, S. P. Tetrahedron Lett. 1988, 29, 3407; For an
alternative synthesis of triethylorthopropiolate, see: (d) Boche, G.; Bigalke, J.
Tetrahedron Lett. 1984, 25, 955.
Supplementary data associated with this Letter can be found, in
References and notes
1. (a) Meléndez, R. E.; Lubel, W. D. Tetrahedron 2003, 59, 2581; (b) Bower, J. F.;
Rujirawanich, J.; Gallagher, T. Org. Biomol. Chem. 2010, 8, 1505.
20. March, J. Adv. Org. Chem., 4th ed.; Wiley: New York, 1992; p 1136.