Journal of the American Chemical Society
COMMUNICATION
Scheme 3. Proposed Reaction Mechanism for the Aziridination
and are consistent with an Fe(IV) imide. These results showcase
a more direct approach to the formation of aziridines from readily
available substrates with improved atom economy.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete experimental details
b
and X-ray crystallographic data (CIF). This material is available
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This research was funded in part by a Joint Research and
Development Grant from the State of Tennessee.
’ REFERENCES
(1) Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.;
Wiley-VCH: Weinheim, Germany, 2006.
(2) Abu-Omar, M. M. Dalton Trans. 2011, 40, 3435.
(3) (a) Kasai, M.; Kono, M. Synlett 1992, 778. (b) Colandrea, V. J.;
Rajaraman, S.; Jimenez, L. S. Org. Lett. 2003, 5, 785. (c) Liu, R.; Herron,
S. R.; Fleming, S. A. J. Org. Chem. 2007, 72, 5587.
(4) (a) Loncaric, C.; Wulff, W. D. Org. Lett. 2001, 3, 3675.
(b) Sharma, P.; Kumar, A.; Upadhyay, S.; Sahu, V.; Singh, J. Eur. J.
Med. Chem. 2009, 44, 251. (c) Nemeikaite-Ceniene, A.; Sarlauskas, J.;
Anusevicius, Z.; Nivinskas, H.; Cenas, N. Arch. Biochem. Biophys. 2003,
416, 110.
Figure 2. Example ESI-MS spectrum measured for an acetonitrile solu-
tion of [(Me,EtTCPh)FedN(p-CF3ÀPh)](PF6)2 (a variant of 3). The
inset shows the highlight for the [(Me,EtTCPh)FedN(p-CF3ÀPh)]2+ ion.
(5) Fantauzzi, S.; Caselli, A.; Gallo, E. Dalton Trans. 2009, 5434.
(6) Aviv, I.; Gross, Z. Chem. Commun. 2007, 1987.
(7) (a) Omura, K.; Murakami, M.; Uchida, T.; Irie, R.; Katsuki, T.
Chem. Lett. 2003, 32, 354. (b) Leung, S. K.-Y.; Tsui, W.-M.; Huang, J.-S.;
Che, C.-M.; Liang, J.-L.; Zhu, N. J. Am. Chem. Soc. 2005, 127, 16629.
(c) Liu, Y.; Che, C.-M. Chem.—Eur. J. 2010, 16, 10494.
(8) Smith, P. A. S.; Brown, B. B. J. Am. Chem. Soc. 1951, 73, 2438.
(9) Li, Y.; Gao, L.-X.; Han, F.-S. Chem.—Eur. J. 2010, 16, 7969.
(10) Br€ase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem.,
Int. Ed. 2005, 44, 5188.
(11) (a) Cenini, S.; Tollari, S.; Penoni, A.; Cereda, C. J. Mol. Catal. A:
Chem. 1999, 137, 135. (b) Fantauzzi, S.; Gallo, E.; Caselli, A.; Ragaini, F.;
Macchi, P.; Casati, N.; Cenini, S. Organometallics 2005, 24, 4710.
(c) Piangiolino, C.; Gallo, E.; Caselli, A.; Fantauzzi, S.; Ragaini, F.;
Cenini, S. Eur. J. Org. Chem. 2007, 743.
(12) Fantauzzi, S.; Gallo, E.; Caselli, A.; Piangiolino, C.; Ragaini, F.;
Cenini, S. Eur. J. Org. Chem. 2007, 6053.
(13) Bass, H. M.; Cramer, S. A.; Price, J. L.; Jenkins, D. M.
Organometallics 2010, 29, 3235.
(14) (a) Poyatos, M.; Mata, J. A.; Peris, E. Chem. Rev. 2009, 109
3677. (b) Peris, E. Top. Organomet. Chem. 2007, 21, 83.
(15) McGuinness, D. S.; Gibson, V. C.; Steed, J. W. Organometallics
2004, 23, 6288.
On the basis of previously studied aziridination reactions with
aryl azides, a potential intermediate in this reaction mechanism is
an iron(IV) imide, 3 (Scheme 3).5 Threefold-symmetric strong
σ-donor ligands have been demonstrated to stabilize iron imides
in the 2+,19 3+,20 and 4+21 oxidation states, but these complexes
do not react with alkenes to give aziridines. While we have not
been able to isolate [(Me,EtTCPh)FedNAr](PF6)2 (3), the ESI-
MS data are consistent with its formation. Addition of 1-azido-
4-(trifluoromethyl)benzene to a solution of 2 at room tempera-
ture in acetonitrile gave an ESI-MS spectrum with a peak at
m/z 585.7 associated with [(Me,EtTCPh)FedN(p-CF3Ph)]2+
(Figure 2).
In conclusion, we have synthesized a new iron aziridination
catalyst supported by a macrocyclic tetracarbene ligand.
This tetracarbene iron complex, [(Me,EtTCPh)Fe(NCCH3)2]
(PF6)2, was synthesized from the tetraimidazolium precursor
(
Me,EtTCPh)(I)4 and characterized by NMR spectroscopy, mass
spectrometry, and single-crystal X-ray diffraction. This catalyst
reacts with aryl azides and a wide variety of substituted aliphatic
alkenes to give aziridines in a “C2 + N1” addition reaction. We
were able to form 9-(p-tolyl)-9-azabicyclo[6.1.0]nonane in
nearly quantitative yield from cis-cyclooctene and p-tolyl azide.
In addition, we were able synthesize aziridines with 2,3-dimethyl-
2-butene, a tetrasubstituted alkene. These aliphatic alkenes are
generally considered to be more challenging reagents than the
styrene variants studied previously. Furthermore, the catalyst can
be recovered and reused up to three additional times with only a
nominal reduction in yield. To investigate the potential inter-
mediate in the reaction, mass spectrometry data were collected
(16) Kaufhold, O.; Hahn, F. E.; Pape, T.; Hepp, A. J. Organomet.
Chem. 2008, 693, 3435.
(17) (a) McKie, R.; Murphy, J. A.; Park, S. R.; Spicer, M. D.; Zhou,
S.-z. Angew. Chem., Int. Ed. 2007, 46, 6525. (b) Park, S. R.; Findlay, N. J.;
Garnier, J.; Zhou, S.; Spicer, M. D.; Murphy, J. A. Tetrahedron 2009,
65, 10756. (c) Findlay, N. J.; Park, S. R.; Schoenebeck, F.; Cahard, E.;
Zhou, S.-z.; Berlouis, L. E. A.; Spicer, M. D.; Tuttle, T.; Murphy, J. A.
J. Am. Chem. Soc. 2010, 132, 15462.
(18) (a) Soundararajan, N.; Platz, M. S. J. Org. Chem. 1990, 55, 2034.
(b) Poe, R.; Schnapp, K.; Young, M. J. T.; Grayzar, J.; Platz, M. S. J. Am.
Chem. Soc. 1992, 114, 5054.
19344
dx.doi.org/10.1021/ja2090965 |J. Am. Chem. Soc. 2011, 133, 19342–19345