E. Ripaud et al. / Tetrahedron Letters 52 (2011) 6573–6577
6577
Gallego-Planas, N.; Frère, P.; Roncali, J. New. J. Chem. 2009, 33, 801; (c) Ripaud,
E.; Leriche, P.; Cocherel, N.; Cauchy, T.; Frère, P.; Roncali, J. Org. Biomol. Chem.
2011, 9, 1034.
arm present torsion angles of 31.2°, 38.6°, and 39.4°, respectively.
These twists which are not due to intramolecular steric hindrance
are imposed by intermolecular interactions as shown by the
numerous short intermolecular distances observed in the crystal.
The packing arrangement of the molecules in the crystal is
characterized by layers of molecules stacking along the a axis
separated by short distances (3.37 Å, Fig. 5, ESI Fig. S6). In these
stacks, the 3 PFP rings of each molecule are engaged in PFP–PFP
interactions with two other molecules. Numerous short distances
ranging from 3.19(9) and 3.39(5) Å shown in blue on Figure 5 are
observed between fluorine and carbon atoms of the two super-
posed PFP rings.
Moreover, in layers, the molecules are imbricated within each
other and present many C–HÁ Á ÁF contacts. Figure 6 shows a set of
molecules in a sheet, the red dotted lines symbolise the interac-
tions between hydrogen and fluorine atoms. The distances dH–F
represented here range between 2.58 and 2.89 Å.
Finally, it may be noted that the structure is built from C–HÁ Á ÁF
interactions in sheets and from inter-PFP ring interactions in stacks
thus allowing a strong three dimensional arrangement. These mul-
tiple interactions probably explain the deviation from planarity of
the lateral arms for compound 2 in the crystal.
In conclusion we have synthesized two new TPA systems with
peripheral PFP groups. The presence of these electron withdrawing
groups leads to high oxidation potentials. On the other hand, the
results of spectroscopic and X-ray diffraction analyses are consis-
tent with the existence of multiple intermolecular interactions in
the solid state. The reminiscence of fluorescence associated with
strong intermolecular interaction in the solid states may allow
the incorporation of such derivatives as active layer in OLEDs and
in organic solar cells.
5. Wang, J.-L.; He, Z.; Wu, H.; Cui, H.; Li, Y.; Gong, Q.; Cao, Y.; Pei, J. Chem. Asian J.
2010, 5, 1455.
6. (a) Patrick, C. R.; Prosser, G. S. Nature 1960, 187, 1021; (b) Williams, J. H. Acc.
Chem. Res. 1993, 26, 593; (c) Coates, G. W.; Dunn, A. R.; Henling, L. M.; Ziller, J.
W.; Lobkovsky, E. B.; Grubbs, R. H. J. Am. Chem. Soc. 1998, 120, 3641; (d) Renak,
M. L.; Bartholomew, G. P.; Wang, S.; Ricatto, P. J.; Lachicotte, R. J.; Bazan, G. C. J.
Am. Chem. Soc. 1999, 121, 7787; (e) Crouch, D. J.; Skabara, P. J.; Heeney, M.;
McCulloch, I.; Coles, S. J.; Hurtshouse, M. B. Chem. Commun. 2005, 1465; (f)
Crouch, D. J.; Skabara, P. J.; Lohr, J. E.; McDoual, J. J. W.; Heeney, M.; McCulloch,
I.; Sparrowe, D.; Shkunov, M.; Cole, S. J.; Horton, P. N.; Hursthouse, M. B. Chem.
Mater. 2005, 17, 6567; (g) Wheeler, S. E.; Houk, K. N. J. Am. Chem. Soc. 2008, 130,
10854; (h) Clement, S.; Meyer, F.; De Winter, J.; Coulembier, O.; Vande Velde, C.
M. L.; Zeller, M.; Gerbaux, P.; Ballandier, J.-Y.; Sergeyev, S.; Lazzaroni, R.; Geerts,
Y.; Dubois, P. J. Org. Chem. 2010, 75, 1561; (i) Li, C.-Z.; Matsuo, Y.; Niinomi, T.;
Sato, Y.; Nakamura, E. Chem. Commun. 2010, 46, 8582; (j) Mallet, C.; Allain, M.;
Leriche, P.; Frère, P. Cryst. Eng. Commun. 2011, 13, 5833.
7. Papagni, A.; Maiorana, S.; Del Buttero, P.; Perdicchia, D.; Cariati, F.; Cariati, E.;
Marcolli, W. Eur. J. Org. Chem. 2002, 1380.
8. Roquet, S.; Cravino, A.; Leriche, P.; Alévêque, O.; Frère, P.; Roncali, J. J. Am. Chem.
Soc. 2006, 128, 3459.
9. Lee, H. J.; Sohn, J.; Hwang, J.; Park, S. Y. Chem. Mater. 2004, 16, 456.
10. Compound
1.
To
1.53 mmol
of
((perfluorophenyl)methylene)
triphenylphosphorane
6
dissolved in 20 mL of THF at À78 °C, 200 mg
(0.35 mmol) of trisaldehyde 5 dissolved in 30 mL of THF are dropped. The
mixture is stirred 1 h at À78 °C then 12 h at room temperature. After
evaporation of THF, the residue is dissolved in methylenechloride, washed
with water and dried on magnesium sulfate. After evaporation of solvent,
compound is purified threw chromatography on silica gel using toluene as
eluent. 130 mg (35%) of yellow powder are isolated. 1H NMR (C6D6): 7.47 (d,
2H, 3J = 8.5 Hz); 7.40 (d, 1H, 3J = 16.5 Hz); 7.09 (d, 2H, 3J = 8.5 Hz); 6.92 (d, 1H,
3J = 3.5 Hz); 6.73 (d, 1H, 3J = 16.5 Hz); 6.72 (d, 1H, 3J = 3.5 Hz). 13C NMR (C6D6)
147.1; 145.1; 141.2; 132.5; 132.4; 130.2; 129.5; 127.3; 124.9; 123.7; 111.5; 19
F
NMR À163.8 (td, 2F); À157.7 (t, 1F); À144.0 (dd, 2F); MP (DSC): 213 °C; HRMS
(Calcd/Found, [M+.], g molÀ1): 1067.0826/1067.0828. Compound 2. Analogous
procedure than for 1 starting from 0.18 mmol of 4 after chromatography on
silica gel (hexane/toluene 7:3), 87 mg (25%) of a yellow solid are isolated. 1H
NRM (C6D6): 7.31 (d, 1H, 3J = 16.5 Hz); 7.20 (d, 2H, 3J = 9 Hz); 7.08 (d, 2H,
3J = 9 Hz); 6.75 (d, 1H, 3J = 16.5 Hz); 13C NMR (C6D6): 147.8; 132.2; 128.5;
128.1; 127.8; 124.7; 111.7; MP (DSC): 212 °C; HRMS (Calcd/Found, [M+],
g molÀ1): 821.1194/821.1192. (in both cases, carbons bearing fluorine which
are known to produce large signals and low intensity were not observed).
11. (a) Leriche, P.; Frère, P.; Cravino, A.; Alevêque, O.; Roncali, J. J. Org. Chem. 2007,
72, 8332; (b) Ripaud, E.; Yoann, O.; Leriche, P.; Cornil, J.; Roncali, J. J. Phys. Chem.
B 2011, 115, 9379.
Acknowledgments
Authors thank the PIAM for analytical measurements and the
French Minister of research for E.R. and C.M. granting.
12. Gaussian 09, Revision A.02, M. J. Frisch, et al. Gaussian, Inc., Wallingford CT,
2009.
Supplementary data
13. X-ray single-crystal diffraction data for 2 were collected at 293 K on a BRUKER
KappaCCD diffractometer, equipped with a graphite monochromator utilizing
MoK
a radiation (k = 0.71073 Å). The structure was solved by direct methods
Supplementary data NMR spectra of compound 1–2; solvato-
chromic studies for compounds 1–2, HOMO, LUMO and higher and
lower levels for compounds 1–2 associated with this article can be
using SIR92 (Altomare et al.,1993) and refined on F2 by full matrix least-
squares techniques using SHELXL97 (G.M. Sheldrick, 1998). All non-H atoms
were refined anisotropically and absorption was corrected by SADABS program
(Sheldrick, Bruker, 2000). The
H atoms were included in the calculation
without refinement. Crystallographic data for 2:
C42H18F15N, M = 821.57,
yellow prism, 0.27 Â 0.22 Â 0.04 mm3, triclinic, space group p1,
ꢀ
a = 11.836(1) Å, b = 12.166(3) Å, c = 13.015(2) Å,
a = 95.22(1)°, b = 98.84(1)°,
References and notes
c
l
= 109.04(1)°,V = 1730.4(5) Å3,
(MoK F(000) = 824, hmin = 2.20°, hmax = 26.04°, 33738
Z = 2,
q
calc = 1.577 g/cm3,
a
) = 0.149 mmÀ1
,
1. Shirota, Y. J. Mater. Chem. 2005, 15, 75.
reflections collected, 6749 unique (Rint = 0.10), parameters/restraints = 523:0,
R1 = 0.0732 and wR2 = 0.1079 using 3429 reflections with I>2 (I), R1 = 0.1617
and wR2 = 0.1365 using all data, GOF = 1.103, À0.241 <
< 0.184 e ÅÀ3
2. (a) Roquet, S.; De Bettignies, R.; Leriche, P.; Cravino, A.; Roncali, J. J. Mater.
Chem. 2006, 16, 1; (b) Cravino, A.; Roquet, S.; Leriche, P.; Alévêque, O.; Frère, P.;
Roncali, J. Chem. Commun. 2006, 1416; (c) Shang, H.; Fan, H.; Liu, Y.; Hu, W.; Li,
Y.; Zhan, X. Adv. Mater. 2011, 13, 1554; (d) Mikroyannidis, J. A.; Kabanakis, A.
N.; Sharma, S. S.; Sharma, G. D. Org. Elec. 2011, 12, 774; (e) Ripaud, E.; Rousseau,
T.; Leriche, P.; Roncali, J. Adv. Energ. Mater. 2011, 1, 540.
3. Li, R.; Li, H.; Song, Y.; Tang, Q.; Liu, Y.; Xu, W.; Hu, W.; Zhu, D. Adv. Mater. 2009,
21(16), 1605.
4. (a) Alévêque, O.; Leriche, P.; Cocherel, N.; Frère, P.; Cravino, A.; Roncali, J. Sol.
Energy Mater. Sol. Cells 2008, 92, 1170; (b) Cocherel, N.; Leriche, P.; Ripaud, E.;
r
D
q
.
CCDC-833959 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
14. (a) Gagnon, E.; Maris, T.; Wuest, D. Org. Lett. 2010, 12, 404; (b) Tian, Y.-P.; Li, L.;
Zhang, J.-Z.; Yang, J.-X.; Zhou, H.-P.; Wu, J.-Y.; Sun, P.-P.; Tao, L.-M.; Guo, Y.-H.;
Wang, C.-K.; Xing, H.; Huang, W.-H.; Tao, X.-T.; Jiang, M.-M. J. Mater. Chem.
2007, 17, 3646.