6966
D. T. S. Rijkers et al. / Tetrahedron Letters 52 (2011) 6963–6967
Figure 3. (A) UV–Vis spectra (in CHCl3 at T = 298 K) of 5a (red line: 23
l
M) and 7a (blue line: 15
lM); (B) Reversible charge-transfer quenching of 5a: (red line: 23 lM in
CHCl3), after the addition of TFA (10
l
L) (blue line), after neutralization with Et3N (10 L) (green line).
l
11. 4-Ethynyl-N,N-dimethylaniline is commercially available; CAS [17573-94-3].
Acknowledgments
a
12. N -{4-[(1E)-4,4-dicyano-3-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]benzoyl}-
alanine ethyl ester (5a):18 Rf = 0.62 (CH2Cl2/MeOH, 95:5 v/v), Rf = 0.66 (EtOAc/
Et2O, 1:1 v/v), Rf = 0.37 (Et2O); Rt = 38.8 min;19 mp 136–140 °C; 1H NMR
(300 MHz, CDCl3, 25 °C): d = 1.32 (t, 3J(H,H) = 7.2 Hz, 3H; CH3), 1.53 (d,
3J(H,H) = 7.2 Hz, 3H; bCH3 Ala), 3.10 (s, 6H; N(CH3)2), 4.22 (q, 3J(H,H) = 7.2 Hz,
D.T.S.R. gratefully acknowledges the ERC Advanced Grant No.
246637 (‘OPTELOMAC’) for financial support, and Utrecht Univer-
sity for facilitating the sabbatical leave at the ETHZ. Dr. Milan
Kivala (Friedrich-Alexander Universität, Erlangen-Nürnberg, Ger-
many) is acknowledged for his interest and scientific discussions
in relation to this work.
2H; OCH2), 4.78 (quin, 3J(H,H) = 7.2 Hz, 1H; CH Ala), 6.75 (d, 3J(H,H) = 9 Hz, 2H;
a
arom H), 6.79 (overlapping signal, 1H; amide NH), 7.01 (d, 3J(H,H) = 15.6 Hz,
1H; @CH), 7.40 (d, 3J(H,H) = 9 Hz, 2H; arom H), 7.54 (d, 3J(H,H) = 15.6 Hz, 1H;
@CH), 7.60 (d, 3J(H,H) = 8.4 Hz, 2H; arom H), 7.82 (d, 3J(H,H) = 8.4 Hz, 2H;
arom H); 13C NMR (75.5 MHz, CDCl3, 25 °C): d = 172.9, 170.0, 165.5, 152.7,
146.2, 137.6, 135.6, 131.6, 128.4, 127.7, 126.9, 119.5, 114.8, 114.0, 111.3, 78.2,
77.2, 61.8, 48.7, 40.1, 18.8, 14.3; UV–Vis (CHCl3): kmax (e) = 475 (8,350),
References and notes
358 nm (25,750 molꢀ1 dm3 cmꢀ1); ESMS calcd for C26H26N4O3: 442.20, found
m/z 443.40 [M+H]+.
1. For selected reviews, see: (a) Tung, C.-H. Biopolymers (Peptide Science) 2004, 76,
391; (b) Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Curr. Opin. Biotechnol. 2007, 18,
17; (c) Lee, S.; Xie, J.; Chen, X. Chem. Rev. 2010, 110, 3087.
13. Rijkers, D. T. S.; van Esse, G. W.; Merkx, R.; Brouwer, A. J.; Jacobs, H. J. F.; Pieters,
R. J.; Liskamp, R. M. J. Chem. Commun. 2005, 4581.
14. Compound 7a: Rf = 0.58 (CH2Cl2/MeOH, 9:1 v/v), Rf = 0.26 (CH2Cl2/MeOH, 95:5
2. Dent, A. H.; Aslam, M. In Bioconjugation, Protein Coupling Techniques for the
Biomedical Sciences; Macmillan: London, 2000; pp 50–100. Chapter 2.
3. Herein, we use ‘chromophore’/‘non-chromophore’ in terms to indicate that it
absorbs visible light, irrespective of its property to absorb UV light.
4. (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057; (b)
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596; (c) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
5. For a review, see: (a) Le Droumaguet, C.; Wang, C.; Wang, Q. Chem. Soc. Rev. 2010,
39, 1233; for selected papers, see: (b) Zhou, Z.; Fahrni, C. J. J. Am. Chem. Soc. 2004,
126, 8862; (c) Jarowski, P. D.; Wu, Y.-L.; Schweizer, W. B.; Diederich, F. Org. Lett.
2008, 10, 3347; (d) Bag, S. S.; Kundu, R. J. Org. Chem. 2011, 76, 3348; (e) Qi, J.; Han,
M.-S.; Chang, Y.-C.; Tung, C.-H. Bioconjugate Chem. 2011, 22, 1758.
v/v), Rf = 0.07 (EtOAc/hexane, 1:1 v/v); Rt = 38.5 min;19 mp 149–153 °C; 1H
NMR (300 MHz, CDCl3, 25 °C): d = 0.81 (d, 3J(H,H) = 6.6 Hz, 3H;
c CH3 Val),
0.92 (d, 3J(H,H) = 6.6 Hz, 3H; c0CH3 Val), 1.32 (t, 3J(H,H) = 7.2 Hz, 3H; CH3),
1.55 (d, 3J(H,H) = 7.2 Hz, 3H; bCH3 Ala), 2.17 (m, 1H; bCH Val), 3.20 (s, 3H;
NCH3), 3.73 (s, 3H; OCH3), 3.97 (d, 3J(H,H) = 18 Hz, 1H; CH2 Gly), 4.09 (d,
3J(H,H) = 35.1 Hz, 1H; CH2 Gly), 4.27 (q, 3J(H,H) = 7.2 Hz, 2H; OCH2), 4.59 (dd,
3J(H,H) = 4.5 Hz, 3J(H,H) = 9 Hz, 1H;
a
CH Val), 4.78 (quin, 3J(H,H) = 7.2 Hz, 1H;
a
CH Ala), 6.64 (d, 3J(H,H) = 9.3 Hz, 1H; amide NH Val), 6.80 (d,
3J(H,H) = 7.2 Hz, 1H; amide NH Ala), 6.85 (d, 3J(H,H) = 9.3 Hz, 2H; arom H),
6.96 (d, 3J(H,H) = 15.6 Hz, 1H; @CH), 7.40 (d, 3J(H,H) = 9.3 Hz, 2H; arom H),
7.57 (d, 3J(H,H) = 15.6 Hz, 1H; @CH), 7.61 (d, 3J(H,H) = 8.1 Hz, 2H; arom H),
7.82 (d, 3J(H,H) = 8.1 Hz, 2H; arom H); 13C NMR (75.5 MHz, CDCl3, 25 °C):
d = 173.1, 172.1, 170.0, 169.0, 165.6, 151.5, 146.8, 137.5, 136.0, 131.4, 128.6,
127.9, 126.7, 122.1, 114.2, 113.4, 112.6, 61.8, 57.6, 56.8, 52.3, 48.7, 39.7,
6. Rijkers, D. T. S.; Diederich, F. Tetrahedron Lett. 2011, 52, 4021.
7. (a) Michinobu, T.; May, J. C.; Lim, J. H.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.;
Gross, M.; Biaggio, I.; Diederich, F. Chem. Commun. 2005, 737; (b) Michinobu, T.;
Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Frank, B.; Moonen, N. P.; Gross, M.;
Diederich, F. Chem. Eur. J. 2006, 12, 1889; (c) Jarowski, P. D.; Wu, Y.-L.; Boudon,
C.; Gisselbrecht, J.-P.; Gross, M.; Schweizer, W. B.; Diederich, F. Org. Biomol.
Chem. 2009, 7, 1312; (d) Wu, Y.-L.; Jarowski, P. D.; Schweizer, W. B.; Diederich,
F. Chem. Eur. J. 2010, 16, 202.
31.2, 22.7, 19.1, 18.7, 17.6, 14.1; UV–Vis (CHCl3): kmax (e) = 435 (5,100),
358 nm (17,000 molꢀ1 dm3 cmꢀ1); ESMS calcd for C33H37N5O6: 599.68, found
m/z 600.40 [M+H]+, 622.70 [M+Na]+.
15. The synthesis of alkyne 6 is described in Ref. 6
a
16. N -{4-[(1E)-4,4-dicyano-3-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]benzoyl}-
a
valine methyl ester (5b): Rf = 0.08 (CH2Cl2/MeOH, 98:2 v/v), Rf = 0.14 (EtOAc/
hexane, 2:1 v/v), Rf = 0.30 (EtOAc/hexane, 1:1 v/v); Rt = 38.8 min;19 mp 163–
165 °C; 1H NMR (300 MHz, CDCl3, 25 °C): d = 1.03 (t, 3J(H,H) = 5.8 Hz, 6H; CH3
Val), 2.32 (m, 1H; bCH Val), 3.10 (s, 6H; N(CH3)2), 3.79 (s, 3H; OCH3), 4.80 (m,
8. N -[4-(2,2-Dicyanovinyl)benzoyl]-alanine ethyl ester (3a): Rf = 0.68 (CH2Cl2/
MeOH, 95:5 v/v), Rf = 0.33 (CH2Cl2/MeOH, 98:2 v/v); mp 112–117 °C;
½ ꢂ
a 2D0 = +59.1 (c = 0.33, CHCl3); 1H NMR (300 MHz, CDCl3, 25 °C): d = 1.30 (t,
3J(H,H) = 7.2 Hz, 3H; CH3), 1.51 (d, 3J(H,H) = 7.2 Hz, 3H; bCH3 Ala), 4.23 (q,
a
CH Val), 6.66 (d, 3J(H,H) = 8.5 Hz, 1H; amide NH), 6.76 (d, 3J(H,H) = 9 Hz,
3J(H,H) = 7.2 Hz, 2H; OCH2), 4.75 (quin, 3J(H,H) = 7.2 Hz, 1H;
aCH Ala), 7.03 (d,
1H;
2H; arom H), 7.02 (d, 3J(H,H) = 15.7 Hz, 1H; @CH), 7.39 (d, 3J(H,H) = 9 Hz, 2H;
arom H), 7.54 (d, 3J(H,H) = 15.7 Hz, 1H; @CH), 7.59 (d, 3J(H,H) = 8.5 Hz, 2H; arom
H), 7.81 (d, 3J(H,H) = 8.5 Hz, 2H; arom H); 13C NMR (75.5 MHz, CDCl3, 25 °C):
d = 172.5, 170.0, 166.2, 152.8, 146.2, 135.8, 131.6, 128.4, 127.8, 127.0, 119.5,
114.0, 111.3, 57.5, 52.3, 40.0, 31.6, 18.9, 17.9 (19 lines out of 22); UV–Vis
3J(H,H) = 7.2 Hz, 1H; amide NH), 7.83 (s, 1H; @CH), 7.92 (m, 4H; arom H); 13C
NMR (75.5 MHz, CDCl3, 25 °C): d = 172.7, 164.7, 158.4 (2 lines), 138.5, 133.1,
130.5, 128.0, 113.1, 112.1, 84.7, 61.8, 48.8, 18.4, 14.1; UV–Vis (CHCl3): kmax
(e
) = 314 nm (28,000 molꢀ1 dm3 cmꢀ1); ESMS calcd for C16H15N3O3: 297.31,
found m/z 298.65 [M+H]+.
(CHCl3): kmax (e
) = 475 (9,800), 358 nm (31,000 molꢀ1 dm3 cmꢀ1); ESMS calcd
9. Graffner-Nordberg, M.; Fyfe, M.; Brattsand, R.; Mellgård, B.; Hallberg, A. J. Med.
Chem. 2003, 46, 3455.
10. Cabello, J. A.; Campelo, J. M.; Garcia, A.; Luna, D.; Marinas, J. M. J. Org. Chem.
1984, 49, 5195.
for C27H28N4O3: 456.54, found m/z 457.45 [M+H]+.
17. In comparison with commonly used fluorophores such as 4-chloro-7-nitrobenz-2-
oxa-1,3-diazole (NBD-Cl):
e
= 9,800 molꢀ1 dm3 cmꢀ1, kmax = 336 nm.