Organic Letters
Letter
(11) For pioneering early examples, see: (a) Reference 10.
(b) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
2011, 50, 519−522. (c) Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011,
13, 5608−5611. For selected recent reviews, see: (d) Ping, Y.; Ding,
Q.; Peng, Y. ACS Catal. 2016, 6, 5989−6005. (e) Wang, Q.; Su, Y.; Li,
L.; Huang, H. Chem. Soc. Rev. 2016, 45, 1257−1272.
(12) (a) Murthy, V. N.; Nikumbh, S. P.; Kumar, S. P.; Rao, L. V.;
Raghunadh, A. Tetrahedron Lett. 2015, 56, 5767−5770. For a related
process, see: (b) Kasthuri, M.; Babu, H. S.; Kumar, K. S.; Sudhakar,
Ch.; Kumar, P. V. N. Synlett 2015, 26, 897−900.
(13) In Kurzer’s original work, the hydrolysis of NCTS to phenylurea
was reported in 50% yield upon treatment with alcoholic KOH under
reflux. See ref 9.
EPSRC UK National Mass Spectrometry Facility at Swansea
University.
REFERENCES
■
(1) (a) Larock, R. C. Comprehensive Organic Transformations; VCH:
Weinheim, 1989; p 819. (b) Fleming, F. F. Nat. Prod. Rep. 1999, 16,
597−606. (c) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.;
Shook, B. C. J. Med. Chem. 2010, 53, 7902−7917.
(2) For selected recent reviews, see: (a) Schorgenhumer, J.; Waser,
̈
M. Org. Chem. Front. 2016, 3, 1535−1540. (b) Yu, J.-T.; Teng, F.;
Cheng, J. Adv. Synth. Catal. 2017, 359, 26−38.
(3) For C-cyanation, see: (a) Grignard, V.; Bellet, E. Compt. Rend.
1914, 158, 457−461. For N-cyanation, see: (b) Wallach, O. Ber. Dtsch.
Chem. Ges. 1899, 32, 1872−1875. (c) Braun, J. v. Ber. Dtsch. Chem.
(14) Bhat, S. V.; Robinson, D.; Moses, J. E.; Sharma, P. Org. Lett.
2016, 18, 1100−1103.
(15) For selected reviews that detail the biological relevance,
synthesis, and reactivity of cyanamides, see: (a) Larraufie, M.-H.;
Ges. 1900, 33, 1438−1452. (d) Scholl, R.; Norr, W. Ber. Dtsch. Chem.
̈
Ges. 1900, 33, 1555. For O-cyanation, see: (e) Martin, D.; Bauer, M.
Org. Synth. 1983, 61, 35−38. For S-cyanation, see: (f) Testaferri, L.;
Tingoli, M.; Tiecco, M.; Chianelli, D.; Montanucci, M. Phosphorus
Sulfur Relat. Elem. 1983, 15, 263−268. (g) Kaupp, G.; Schmeyers, J.;
Boy, J. Chem. - Eur. J. 1998, 4, 2467−2474.
̂
Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacote, E.
Synthesis 2012, 44, 1279−1292. (b) Prabhath, M. R. R.; Williams, L.;
Bhat, S. V.; Sharma, P. Molecules 2017, 22, 615−642.
studies.
(4) For phenyl cyanate, see: (a) Martin, D.; Rackow, S. Chem. Ber.
1965, 98, 3662−3671. (b) Sato, N. Tetrahedron Lett. 2002, 43, 6403−
6404. (c) Sato, N.; Yue, Q. Tetrahedron 2003, 59, 5831−5836. For 2-
pyridyl cyanate, see: Koo, J. S.; Lee, J. I. Synth. Commun. 1996, 26,
3709−3713.
(17) McCabe Dunn, J. M.; Duran-Capece, A.; Meehan, B.; Ulis, J.;
Iwama, T.; Gloor, G.; Wong, G.; Bekos, E. Org. Process Res. Dev. 2011,
15, 1442.
(18) Using KOt-Bu as a base produced some minor impurities in the
19F{1H} NMR spectra that were not observed when using NaOt-Am.
Hence, optimization was continued using NaOt-Am as a base.
(19) The remaining mass balance was unreacted 1-decanol.
(20) A control experiment revealed that enantiomerically pure
cyanamide (S)-16 did not epimerize under these reaction conditions.
(21) Using NaH (2 equiv) as a base at 100 °C in 1,4-dioxane for 16 h
also returned starting materials, with no observable conversion to 17
or 18.
(22) The validity of 2-fluorobenzyl tosylate as an intermediate was
further probed via its reaction with phenylcyanamide (1.1 equiv) and
NaOt-Am (2 equiv) at 25 °C in THF for 16 h, giving the expected
cyanamide 3 in 77% isolated yield.
(5) For tosyl cyanide, see: (a) van Leusen, A. M.; Jagt, J. C.
Tetrahedron Lett. 1970, 11, 967−970. (b) Klement, I.; Lennick, K.;
Tucker, C. E.; Knochel, P. Tetrahedron Lett. 1993, 34, 4623−4626.
(c) Stadmuller, H.; Greve, B.; Lennick, K.; Chair, A.; Knochel, P.
̈
Synthesis 1995, 1995, 69−72. For benzylthiocyanate, see: (d) Zhang,
Z.; Liebeskind, L. S. Org. Lett. 2006, 8, 4331−4333. For imidazolium
thiocyanates, see: (e) Talavera, G.; Pena, J.; Alcarazo, M. J. Am. Chem.
̃
Soc. 2015, 137, 8704−8707.
(6) For 1-cyanobenzotriazole, see: (a) Hughes, T. V.; Cava, M. P. J.
Org. Chem. 1999, 64, 313−315. For 1-cyanoimidazole, see: (b) Wu,
Y.-Q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Org. Lett.
2000, 2, 795−797. For 2-cyanopyridazinones, see: (c) Kim, J.-J.;
Kweon, D.-H.; Cho, S.-D.; Kim, H.-K.; Jung, E.-Y.; Lee, S.-G.; Falck, J.
R.; Yoon, Y.-J. Tetrahedron 2005, 61, 5889−5894. For 1-
cyanobenzimidazole, see: (d) Anbarasan, P.; Neumann, H.; Beller,
M. Chem. - Eur. J. 2010, 16, 4725−4728.
(23) Herriott, A. W.; Picker, D. J. Am. Chem. Soc. 1975, 97, 2345−
2349.
(24) 2-Fluorobenzyl iodide was not directly observed through in situ
19F NMR studies. However, upon addition of TBAI (10 mol %), 2-
fluorobenzyl tosylate was no longer observed, suggesting rapid
conversion to cyanamide 3 via 2-fluorobenzyl iodide.
investigation of the reactivity of N-cyano-N-phenyl-p-methylbenzene-
sulfonamide (NCTS) towards O-based nucleophiles.
(26) For selected examples of alternative intermolecular N- to O-
arylsulfonyl transfer processes, see: (a) Hicks, D. R.; Fraser-Reid, B.
Synthesis 1974, 1974, 203. (b) Dhonthulachitty, C.; Kothakapu, S. R.;
Neella, C. K. Tetrahedron Lett. 2016, 57, 2434−2436. (c) Jones, C. S.;
Bull, S. D.; Williams, J. M. J. Org. Biomol. Chem. 2016, 14, 8452−8456.
(7) For trichloroacetonitrile, see: (a) Houben, J.; Fischer, W. Ber.
Dtsch. Chem. Ges. B 1930, 63, 2464−2472. (b) Ayres, J. N.; Ling, K. B.;
Morrill, L. C. Org. Lett. 2016, 18, 5528−5531. For dimethylmalono-
nitrile, see: (c) Erickson, J. L. E; Barnett, M. M. J. Am. Chem. Soc.
1935, 57, 560−562. (d) Reeves, J. T.; Malapit, C. A.; Buono, F. G.;
Sidhu, K. P.; Marsini, M. A.; Sader, C. A.; Fandrick, K. R.; Busacca, C.
A.; Senanayake, C. H. J. Am. Chem. Soc. 2015, 137, 9481−9488.
(e) Malapit, C. A.; Reeves, J. T.; Busacca, C. A.; Howell, A. R.;
Senanayake, C. H. Angew. Chem., Int. Ed. 2016, 55, 326−330.
(f) Malapit, C. A.; Luvaga, I. K.; Reeves, J. T.; Volchkov, I.; Busacca, C.
A.; Howell, A. R.; Senanayake, C. H. J. Org. Chem. 2017, 82, 4993−
4997. For pentachlorobenzonitrile, see: (g) Foulger, N. J.; Wakefield,
B. J. Tetrahedron Lett. 1972, 13, 4169−4170.
(8) (a) Frei, R.; Courant, T.; Wodrich, M. D.; Waser, J. Chem. - Eur. J.
2015, 21, 2662−2668. (b) Vita, M. V.; Caramenti, P.; Waser, J. Org.
Lett. 2015, 17, 5832−5835. (c) Zhu, D.; Chang, D.; Shi, L. Chem.
Commun. 2015, 51, 7180−7183. (d) Wang, Y.-F.; Qiu, J.; Kong, D.;
Gao, Y.; Lu, F.; Karmaker, P. G.; Chen, F.-X. Org. Biomol. Chem. 2015,
13, 365−368. (e) Chowdhury, R.; Schorgenhumer, J.; Novacek, J.;
̈
Waser, M. Tetrahedron Lett. 2015, 56, 1911−1914. (f) Chen, M.;
Huang, Z.-T.; Zheng, Q.-Y. Org. Biomol. Chem. 2015, 13, 8812−8816.
(g) Le Vaillant, F. L.; Wodrich, M. D.; Waser, J. Chem. Sci. 2017, 8,
1790−1800.
(9) (a) Kurzer, F. J. Chem. Soc. 1949, 1034−1038. (b) Kurzer, F. J.
Chem. Soc. 1949, 3029−3033.
(10) Anbarasan, P.; Neumann, H.; Beller, M. Chem. - Eur. J. 2011, 17,
4217−4222.
D
Org. Lett. XXXX, XXX, XXX−XXX