7168
S. Ranatunga, J. R. Del Valle / Bioorg. Med. Chem. Lett. 21 (2011) 7166–7169
and final deprotection. Compounds 9 and 10 were prepared via
condensation with Fmoc-Arg(Boc)2-OH, acylation, and Boc depro-
tection. Synthesis of 11 employed Cbz-Arg(Boc)2-OH in place of
the Fmoc derivative. All compounds were purified by RP-HPLC
prior to biological evaluation. Curiously, we noted that each of
the five compounds was an inseparable mixture of diastereomers,
indicating racemization of one of the chiral centers. We later iden-
tified the Phe residue to be the site of stereochemical erosion. This
event occurs during synthesis of H-Val-Phe-NHBn as confirmed by
careful HPLC analysis. Similar epimerization has been observed
previously in a related series of compounds.25
an attractive lead compound for drug design. We are currently
evaluating the whole cell activity and protease stability of 11 to en-
able further development. Structure–activity relationship studies
are also underway and will be reported in due course.
Acknowledgments
We thank Dr. Eileen Duesler (University of New Mexico) for car-
rying out small molecule X-ray diffraction. This work was sup-
ported by the Miles for Moffitt Foundation and the Moffitt
Research Institute.
We next evaluated the ability of compounds 7–11 to inhibit
Akt1 in vitro. Compounds were tested in a single dose duplicate
Supplementary data
model at a concentration of 50
control. Inhibition was measured as
(GRPRTSSFAEG) phosphorylation by His-tagged Akt1 in the pres-
ence of 33P-labeled 10
M ATP. While compound 7 exhibited
almost no activity, compounds 8–11 inhibited Akt1 significantly
at 50 M concentration.
l
M using staurosporine as a
a
function of crosstide
Supplementary data (crystallographic data (excluding structure
factors) for compounds 2 and 5 have been deposited with the Cam-
bridge Crystallographic Data Centre as supplementary CCDC publi-
cations numbers 813013 and 813016. Experimental procedures
and spectral data for all new compounds, and copies of NMR spec-
tra for inhibitors 7–11) associated with this article can be found, in
l
l
Dose-response curves were then generated for the more active
compounds (8–11). As shown in Figure 3, each of the GSK3b mim-
ics inhibited the activity of Akt1 in dose-dependent fashion with
IC50 values in the low micromolar range. Based on the structures
of 7–11, the absence of an N-terminal hydrophobic group has a
negative effect on activity, as does a shortening of the guanidine
tether (see Table 1, 7 vs 8). The most potent inhibitor in the series,
Cbz-Arg-[5,6 carbmate scaffold]-Val-Phe-NHBn (11), exhibited an
References and notes
1. Staal, S. P. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 5034.
2. Staal, S. P.; Hartley, J. W.; Rowe, W. P. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 3065.
3. Bellacosa, A.; Testa, J. R.; Staal, S. P.; Tsichlis, P. N. Science 1991, 254, 274.
4. Du, K.; Tsichlis, P. N. Oncogene 2005, 24, 7401.
5. Cheng, J. Q.; Lindsley, C. W.; Cheng, G. Z.; Yang, H.; Nicosia, S. V. Oncogene 2005,
24, 7482.
IC50 of 3.1 lM. The enhanced potency of 11 relative to 9 and 10
may also be due to the increased length of the tether bearing the
aromatic moiety group (Cbz vs benzyl or phenacyl). Compound
11 compares favorably with previously reported inhibitors of Akt
in terms of in vitro activity, despite only harboring one canonical
peptide bond (between Val and Phe).
In summary, we have synthesized a set of GSK3b mimics featur-
ing a novel extended dipeptide surrogate. Compounds 7–11 were
designed to demonstrate the ability of our constrained scaffold to
act as a useful conformational probe. Evaluation of these com-
pounds for activity against Akt1 led to the discovery of 11 as a
low micromolar inhibitor. Given the potential advantages of a sub-
strate mimetic strategy for targeting Akt, compound 11 represents
6. Bellacosa, A.; de Feo, D.; Godwin, A. K.; Bell, D. W.; Cheng, J. Q.; Altomare, D. A.;
Wan, M.; Dubeau, L.; Scambia, G.; Masciullo, V.; Ferrandina, G.; Benedetti
Panici, P.; Mancuso, S.; Neri, G.; Testa, J. R. Int. J. Cancer 1995, 64, 280.
7. Cheng, J. Q.; Godwin, A. K.; Bellacosa, A.; Taguchi, T.; Franke, T. F.; Hamilton, T.
C.; Tsichlis, P. N.; Testa, J. R. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9267.
8. Altomare, D. A.; Testa, J. R. Oncogene 2005, 24, 7455.
9. Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.; Puc, J.; Miliaresis,
C.; Rodgers, L.; McCombie, R.; Bigner, S. H.; Giovanella, B. C.; Ittmann, M.;
Tycko, B.; Hibshoosh, H.; Wigler, M. H.; Parsons, R. Science 1997, 275, 1943.
10. Steck, P. A.; Pershouse, M. A.; Jasser, S. A.; Yung, W. K.; Lin, H.; Ligon, A. H.;
Langford, L. A.; Baumgard, M. L.; Hattier, T.; Davis, T.; Frye, C.; Hu, R.;
Swedlund, B.; Teng, D. H.; Tavtigian, S. V. Nat. Genet. 1997, 15, 356.
11. Parsons, R. Semin. Cell. Dev. Biol. 2004, 15, 171.
12. Hsu, J. H.; Shi, Y.; Hu, L.; Fisher, M.; Franke, T. F.; Lichtenstein, A. Oncogene
2002, 21, 1391.
13. Zinda, M. J.; Johnson, M. A.; Paul, J. D.; Horn, C.; Konicek, B. W.; Lu, Z. H.;
Sandusky, G.; Thomas, J. E.; Neubauer, B. L.; Lai, M. T.; Graff, J. R. Clin. Cancer
Res. 2001, 7, 2475.
14. Page, C.; Lin, H. J.; Jin, Y.; Castle, V. P.; Nunez, G.; Huang, M.; Lin, J. Anticancer
Res. 2000, 20, 407.
15. Crowell, J. A.; Steele, V. E.; Fay, J. R. Mol. Cancer Ther. 2007, 6, 2139.
16. Barnett, S. F.; Bilodeau, M. T.; Lindsley, C. W. Curr. Top. Med. Chem. 2005, 5, 109.
17. Heerding, D. A.; Safonov, I. G.; Verma, S. K. Annu. Rep. Med. Chem. 2007, 42, 365.
18. Li, Q. Expert Opin. Ther. Pat. 2007, 17, 1077.
19. Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; Defeo-
Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E.; Duggan, M. E.
Bioorg. Med. Chem. Lett. 2005, 15, 761.
120
8
9
IC50 = 40.2 (28.4 −56.9) μM
IC50 = 16.3 (11.8 −22.4) μM
100
80
60
40
20
0
10 IC50 = 15.0 (11.5 −19.5) μM
11 IC50 3.1 (1.9 −4.8) μM
=
20. Collins, I. Anti-Cancer Agents Med. Chemi. 2009, 9, 32.
21. Garcia-Echeverria, C.; Sellers, W. R. Oncogene 2008, 27, 5511.
22. Fayard, E.; Tintignac, L. A.; Baudry, A.; Hemmings, B. A. J. Cell Sci. 2005, 118,
5675.
-8
-7
-6
-5
-4
-3
Log [Compound] (M)
23. Breitenlechner, C.; Gassel, M.; Engh, R.; Bossemeyer, D. Oncol. Res. 2004, 14, 267.
24. Kumar, C. C.; Madison, V. Oncogene 2005, 24, 7493.
25. Kayser, K. J.; Glenn, M. P.; Sebti, S. M.; Cheng, J. Q.; Hamilton, A. D. Bioorg. Med.
Chem. Lett. 2007, 17, 2068.
Figure 3. Akt1 dose–response curves for 8–11 (95% confidence interval).
26. Kayser-Bricker, K. J.; Glenn, M. P.; Lee, S. H.; Sebti, S. M.; Cheng, J. Q.; Hamilton,
A. D. Bioorg. Med. Chem. 2009, 17, 1764.
27. Litman, P.; Ohne, O.; Ben-Yaakov, S.; Shemesh-Darvish, L.; Yechezkel, T.;
Salitra, Y.; Rubnov, S.; Cohen, I.; Senderowitz, H.; Kidron, D.; Livnah, O.;
Levitzki, A.; Livnah, N. Biochemistry 2007, 46, 4716.
Table 1
Effect of 7–11 on Akt1 activity at 50
l
M inhibitor concentration
% Akt1 activity at 50 lM
Compound
28. Niv, M. Y.; Rubin, H.; Cohen, J.; Tsirulnikov, L.; Licht, T.; Peretzman-Shemer, A.;
Cna’an, E.; Tartakovsky, A.; Stein, I.; Albeck, S.; Weinstein, I.; Goldenberg-
Furmanov, M.; Tobi, D.; Cohen, E.; Laster, M.; Ben-Sasson, S. A.; Reuveni, H. J.
Biol. Chem. 2004, 279, 1242.
29. Enkvist, E.; Lavogina, D.; Raidaru, G.; Vaasa, A.; Viil, I.; Lust, M.; Viht, K.; Uri, A. J.
Med. Chem. 2006, 49, 7150.
Run 1
Run 2
7
8
9
10
11
89.4
23.9
14.6
21.6
2.2
92.1
21.1
16.0
16.8
2.4
30. Alessi, D. R.; Caudwell, F. B.; Andjelkovic, M.; Hemmings, B. A.; Cohen, P. FEBS
Lett. 1996, 399, 333.